Reefs shift from net accretion to net erosion along a natural environmental gradient

Nyssa J. Silbiger^{1,*}, Òscar Guadayol^{1,2}, Florence I. M. Thomas¹, Megan J. Donahue¹

University of Hawai'i at Mānoa, Hawai'i Institute of Marine Biology, PO Box 1346, Kāne'ohe, Hawai'i 96744, USA ²Present address: University of Lincoln, School of Life Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, UK

*Corresponding author: silbiger@hawaii.edu

Marine Ecology Progress Series 515:33-44 (2014)

Supplement 1. Additional tables and figures

Tables S1–S5 Figures S1–S7 References for Supplement

	Distance from shore	TA Mean	Min	Max	pH Mean	Min	Max	DIC Mean	Min	Max	pCO ₂ Mean	Min	Max
	(m)												
1	0.67	2165.28	2095.47	2222.46	7.85	7.70	8.03	1962.93	1831.92	2075.01	658.21	383.34	975.33
2	1.10	2163.19	2113.80	2227.00	7.85	7.69	8.02	1961.63	1834.68	2074.01	658.52	395.77	996.26
3	3.10	2165.79	2089.75	2257.98	7.84	7.70	8.02	1968.44	1810.13	2074.89	675.79	390.79	977.94
4	5.80	2162.67	2101.46	2221.84	7.86	7.72	8.03	1959.19	1812.66	2067.66	650.87	377.19	925.28
5	8.20	2160.20	2092.45	2217.20	7.86	7.71	8.03	1956.83	1806.26	2073.59	650.54	378.85	951.15
6	10.00	2162.44	2088.65	2249.94	7.85	7.72	8.01	1961.16	1810.32	2063.16	655.33	392.98	932.32
7	12.60	2153.50	2077.01	2215.51	7.87	7.75	8.00	1945.46	1805.26	2037.73	623.31	402.03	842.97
8	15.70	2148.80	2075.69	2216.86	7.88	7.79	7.99	1934.68	1816.87	2011.11	594.41	422.67	755.96
9	17.20	2151.65	2085.82	2219.42	7.88	7.79	7.98	1940.73	1834.68	2017.91	603.99	433.50	749.74
10	19.60	2146.80	2069.79	2219.24	7.87	7.78	7.97	1938.05	1822.68	2007.47	608.75	444.06	772.08
11	23.70	2144.53	2047.65	2226.42	7.87	7.78	7.97	1936.70	1802.80	2013.38	609.36	442.48	773.40
12	24.80	2149.03	2053.58	2220.95	7.88	7.79	7.99	1937.61	1800.69	2018.77	600.94	418.94	749.22
13	26.10	2153.33	2050.84	2224.86	7.89	7.82	7.98	1938.42	1800.55	1997.31	588.57	431.89	697.11
14	26.70	2159.52	2053.77	2221.09	7.89	7.81	7.98	1940.97	1802.36	2000.49	579.44	432.34	709.40
15	26.90	2161.51	2079.12	2222.29	7.89	7.83	7.98	1942.22	1818.32	2003.07	576.89	427.54	678.45
16	27.70	2170.00	2109.46	2234.96	7.89	7.83	7.95	1950.99	1876.65	2009.64	579.44	483.75	673.61
17	28.80	2166.87	2116.02	2222.18	7.89	7.83	7.94	1947.64	1877.44	2002.80	576.77	497.79	676.40
18	29.50	2174.30	2126.05	2232.07	7.90	7.85	7.95	1950.49	1892.00	2000.87	565.53	498.45	650.80
19	29.80	2190.64	2139.22	2294.06	7.90	7.84	7.95	1966.69	1897.06	2078.80	573.38	498.68	664.07
20	31.60	2182.22	2138.47	2239.22	7.91	7.86	7.94	1954.90	1903.00	1998.34	558.39	504.33	628.52
21	32.40	2187.85	2149.13	2236.12	7.90	7.83	7.94	1964.11	1910.03	2006.13	573.09	511.54	678.21

Table S1. The mean, min, and max for total alkalinity, pH, dissolved inorganic carbon, and pCO₂ at each block

Table S2. Parameters and methods used to measure environmental data. LoD is level of detection

Parameter	Method	Instrument	LoD
Nitrate	Armstrong et al (1967); Grasshoff et al. (1999)	Seal Analytical AA3 HR Nutrient Autoanalyzer	0.04 µmol/l
Nitrite	Armstrong et al (1967); Grasshoff et al. (1999)	Seal Analytical AA3 HR Nutrient Autoanalyzer	0.01 µmol/l
Ammonium	Kérouel and Aminot (1997)	Seal Analytical AA3 HR Nutrient Autoanalyzer	0.02 µmol/l
Phosphate	Murphy and Riley (1962)	Seal Analytical AA3 HR Nutrient Autoanalyzer	0.02 µmol/l
Chlorophyll <i>a</i>	Arar and Collins (1997); Welschmeyer (1994)	Turner Designs 10AU Benchtop and Field Fluorometer	$0.025 \ \mu g/l$
Temperature	Guadayol et al. (2014)	Sonde 600XLM, YSI Incorporates	N/A
Total Alkalinity	Dickson et al. (2007) SOP 3b	Mettler T50 autotitrator	N/A
рН	Dickson et al. (2007) SOP 6b	MolecularDevicesSpectraMax M2	N/A

Table S3. Model selection of raw data with all carbonate chemistry parameters

	k	$-\log(\mathcal{L})$	AICc	ΔΑΙC	\mathbf{R}^2	Rank
рН	4	-34.17	75.84	0.00	0.48	1
pCO ₂	4	-35.19	77.89	2.04	0.42	2
DIC	4	-38.22	83.94	8.10	0.22	3
ТА	4	-38.38	84.26	8.41	0.21	4
Depth	3	-40.01	84.73	8.88	0.06	5
Distance	3	-40.40	85.50	9.66	0.02	6
Temperature	4	-40.03	87.56	11.71	0.07	7
Resource Availability	6	-40.03	94.34	18.50	0.09	8
Full Model	18	-12.23	364.46	288.62	0.98	9

Table S4. Model selection of residual data with all carbonate chemistry parameters

	k	$-\log(\mathcal{L})$	AICc	ΔΑΙC	\mathbf{R}^2	Rank
рН	4	-30.46	68.42	0.00	0.64	1
ТА	4	-32.05	71.60	3.17	0.58	2
pCO ₂	4	-32.31	72.13	3.70	0.57	3
DIC	4	-35.27	78.04	9.62	0.42	4
Depth	3	-40.01	84.73	16.30	0.06	5
Distance	3	-40.40	85.50	17.08	0.02	6
Temperature	4	-40.42	88.33	19.91	0.03	7
Resource Availability	6	-38.91	92.11	23.68	0.18	8
Full Model	18	-12.23	364.46	296.04	0.98	9

Table S5. List of parameters and parameter ranges across all sampling days and sites

Parameter	Range
Mean Temperature Anomaly	-0.0064 - 0.008
Chlorophyll <i>a</i> (μ g L ⁻¹)	0.019-1.36
DIN:DIP	14.56-173.75
pH _T	7.69-8.032
Distance (m)	0.67-32.4
Depth (m)	0.12-4.52

Fig. S1. Map of Kāne'ohe Bay. Red star represents the location of the study site. Insets on upper left are the Main Hawaiian Islands and the island of O'ahu

Fig. S2. Experimental blocks. Images of experimental blocks attached to substrate immediately after deployment (top) and one year later (bottom)

Fig. S3. Net accretion and erosion (square-root transformed) versus raw environmental data. All positive values on the y-axis are net accretion and all negative values are net erosion

Environmental data residuals

Fig. S4. Net accretion and erosion (square-root transformed) versus residual environmental data. All positive values on the y-axis are net accretion and all negative values are net erosion

Fig. S5. Matrix of correlation coefficients for environmental data. Blue background is low correlation and red background is highly correlated. Subplots below the white line (bottom left) are for the nonmanipulated raw environmental data and subplots above the white line (top right) are correlation coefficients of residuals from a multiple regression for each parameter against distance from shore and depth. The 1:1 line shows a histogram of each parameter and the white dots within each color are scatter plots of each corresponding parameter

Fig. S6. pH mean (top) and variance (bottom) for each site versus depth (left) and distance from shore (right) across the transect

Fig. S7. Net accretion and erosion (square-root transformed) versus distance from shore (top) and depth (bottom). All positive values on the y-axis are net accretion and all negative values are net erosion. There is no significant relationship between net accretion-erosion and distance from shore or depth

REFERENCES

- Arar EJ, Collins GB (1997) Method 445.0: In vitro determination of chlorophyll a and pheophytina in marine and freshwater algae by fluorescence. United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory
- Armstrong F, Stearns C, Strickland J (1967) The measurement of upwelling and subsequent biological process by means of the techniconautoanalyzer R and associated equipment. Deep Sea Research 14:381-389
- Dickson A, Sabine C, Christian JR (2007) Guide to Best Practices for Ocean CO₂ Measurements. PICES Special Publication 3
- Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis, 3rd edition. Wiley-VCH, Weinheim
- Guadayol Ò, Silbiger NJ, Donahue MJ, Thomas FIM (2014) Patterns in temporal variability of temperature, oxygen, at pH and along an environmental gradient in a coral reef. PLoS ONE 9:e85213
- Kérouel R, Aminot A (1997) Fluorometric determination of ammonia in sea and estuarine waters by direct segmented flow analysis. Mar Chem 57:265–275
- Murphy J, Riley J (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36
- Welschmeyer NA (1994) Fluorometric analysis of chlorophyll *a* in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992