Coral reef species assemblages are associated with ambient soundscapes

Maxwell B. Kaplan*, T. Aran Mooney, Jim Partan, Andrew R. Solow

*Corresponding author: mkaplan@whoi.edu

Marine Ecology Progress Series 533: 93–107 (2015)

Supplement.

Fig. S1. Relationship between sound pressure level in the high frequency shrimp band (2-20 kHz) and wind speed for three US Virgin Islands reefs, Tektite (A), Yawzi (B), and Ram Head (C). Only Ram Head demonstrated a significant relationship between wind speed and sound pressure level, albeit weakly.

Here, we outline periodogram-based likelihood ratio (LR) tests for temporal and spatial nonstationarity of the spectral density function (sdf) of reef sound. The statistical results underlying these tests are available in Dzhaparidze (1986).

Let X_{th} , $t = 1, 2, ..., T$, be a collection of *T* independent time series each of length *n* recorded at times of day $h = 1, 2, ..., H$ on days $t = 1, 2, ..., T$ and let $f_{th}(\omega)$ be the unknown sdf at time of day *h* on day *t*. Interest centers on testing the null hypothesis $H_o: f_h(\omega) = f_h(\omega)$ for all *h* and *t* that the sdf at each time of day is stationary over time against the general alternative hypothesis H_1 that it is not.

Let $I_{th} (\boldsymbol{\omega}_i)$ be the periodogram ordinate for X_{th} at Fourier frequency

 ω_j , *j* = 1, 2, ..., *J*. It is a standard result that $I_{th}(\omega_j)$ is approximately independent of $I_{th}(\omega_k)$ and has an approximate exponential distribution with mean $f_{th}(\omega_j)$ and probability density function:

$$
g\left(I_{th}\left(\omega_{j}\right)\right)=\frac{1}{f_{th}\left(\omega_{j}\right)}exp\left(-\frac{I_{th}\left(\omega_{j}\right)}{f_{th}\left(\omega_{j}\right)}\right)
$$

The log likelihood is given by:

$$
\log L = -\sum_{t=1}^{T} \sum_{h=1}^{H} \sum_{j=1}^{J} \left(\log f_{th}(\boldsymbol{\omega}_{j}) + \frac{I_{th}(\boldsymbol{\omega}_{j})}{f_{th}(\boldsymbol{\omega}_{j})} \right)
$$

The maximum likelihood (ML) estimate of $f_{th} (\omega_j)$ under H_1 is simply $I_{th} (\omega_j)$ and the corresponding maximized value of the log likelihood is:

$$
\log L_{1} = -THJ - \sum_{t=1}^{T} \sum_{h=1}^{H} \sum_{j=1}^{J} \log I_{th}(\omega_{j})
$$

The ML estimate of the common sdf $f_h(\omega)$ under H_o is the periodogram average:

$$
\hat{f}_h(\boldsymbol{\omega}_j) = \frac{1}{T} \sum_{t=1}^T I_{th}(\boldsymbol{\omega}_j)
$$

and the corresponding maximized value of the log likelihood is:

$$
\log L_o = -THJ - T \sum_{h=1}^{H} \sum_{j=1}^{J} \log \hat{f}_h(\omega_j)
$$

Finally, the LR statistic for testing H_0 against H_1 is:

$$
LR = 2(\log L_1 - \log L_0)
$$

which, under H_o , has an approximate chi squared distribution with degrees of freedom given by $(T-1)$ *HJ*.

The same general approach can be used to test for spatial non-stationarity. Let X_{μ} , *t* = 1, 2, …, *T* be a collection of *T* independent time series each of length *n* recorded at locations $k = 1, 2, ..., K$ at times $t = 1, 2, ..., T$ and let $f_k(\omega_j)$ be the unknown sdf at location *k* at time *t*. Interest centers on testing the null hypothesis $H_o: f_k(\omega_j) = c_{ik} f_t(\omega_j)$ that at each time the sdf's at the different locations are the same up to a multiplicative scaling against the general alternative hypothesis H_1 that they are not. For definiteness, under H_0 , take $c_{t_1} = 1$ for all *t*.

As before, the maximized value of the log likelihood under H_1 is:

$$
\log L_{1} = -TKJ - \sum_{t=1}^{T} \sum_{k=1}^{K} \sum_{j=1}^{J} \log I_{tk}(\omega_{j})
$$

where $I_{ik} (\omega_j)$ is the value of the peridogram at time *t* and location *k* for Fourier frequency ω_j . Maximizing the log likelihood under H_o must be done numerically. In doing so, it is helpful to note that for fixed values of the scaling parameters $c_1 = 1, c_2, \dots, c_K$, the ML estimate of $f_t(\omega)$ is the weighted average:

$$
\hat{f}_t(\boldsymbol{\omega}_j) = \frac{1}{K} \sum_{j=1}^J (I_{tk}(\boldsymbol{\omega}_j) / c_k)
$$

As before, the LR statistic for testing H_0 against H_1 is:

$$
LR = 2 (\log L_1 - \log L_0)
$$

where $\log L_0$ is the numerically maximized log likelihood under H_0 . Under H_0 , *LR* has an approximate chi squared distribution with degrees of freedom given by $T(KJ-(K+J-1))$.

REFERENCES

Dzhaparidze KO (1986) Parameter estimation and hypothesis testing in spectral analysis of stationary time series. Springer-Verlag, New York