Spatio-temporal variation in marine fish traits reveals communitywide responses to environmental change

Esther Beukhof*, Tim Spaanheden Dencker, Laurene Pecuchet, Martin Lindegren

*Corresponding author: estb@aqua.dtu.dk

Marine Ecology Progress Series 610: 205–222 (2019)

- Table S1 Aggregation of species into multi-species groups
- Table S2 Species list and trait values

Table S3 – Best models

Figure S1 – Size-independent growth rate

Figure S2 – Modelled relationships temporal trends of traits

Figure S3 – Modelled relationships spatial trait patterns

Figure S4 – Time series of environmental and fishing variables

Figure S5 – Spatial distribution of environmental and fishing variables

Table S1 – Aggregation of species into multi-species groups

Table S1. Multi-species groups of demersal North Sea fish. Several species in the survey have been aggregated because of difficulties in the identification of species and/or because of probable misidentifications in the past. Grouping has been done as suggested by Heessen et al. (2015).

Species	Multi-species group						
Mustelus mustelus	Mustalus enn						
Mustelus asterias	musterus spp.						
Callionymus lyra							
Callionymus maculatus	Callionumus con						
Callionymus reticulates	cullonymus spp.						
Callionymidae							
Aphia minuta	Translucant gabias						
Crystallogobius linearis	i i ansiucent godies						
Liparis liparis	Lingric spp						
Liparis montagui	Lipuns spp.						
Syngnathus acus							
Syngnathus rostellatus	Suparathidae Other pipefichee*						
Syngnathus typhle	syngnatinade/Other pipelisnes						
Nerophis ophidion							
Ammodytes marinus							
Ammodytes tobianus	Ammodutidae						
Hyperoplus immaculatus	Аттоцуциие						
Hyperoplus lanceolatus							
Argentina silus	Argonting on						
Argentina sphyraena	Argenunu spp.						

* Entelurus aequoreus, another pipefish, is not included in this group.

References

Heessen, H.J.L., Daan, N. & Ellis, J.R. (2015). Fish Atlas of the Celtic Sea, North Sea, and Baltic Sea (1st ed.). Wageningen: Wageningen Academic Publishers.

Table S2 – Species list and trait values

Table S2. Species list and trait values of the demersal North Sea fish species retained in the analysis. Length was calculated as the mean length over all length classes present for each species retained from the survey data (North Sea International Bottom Trawl Survey; https://datras.ices.dk). All trophic level data were taken from FishBase (1). References for the remaining traits are given in the last column.

Species	Common name	Length	Length at maturity	Age at maturity	Lifespan	K	Trophic level	Fecundity	Offspring size	References
Agonus cataphractus	Hooknose	12.8	9.5	1.0	3	0.48	3.43	3000	2	(1-3)
Amblyraja radiata	Starry ray	42.0	37.2	3.5	20	0.13	4.20	17	110	(1, 2, 4)
Ammodytidae	Sandeels	22.9	17.8	2.3	7.5	0.78	3.37	21613	0.8	(1, 2, 5–8)
Ammodytes marinus	Lesser sandeel		14.0	2.6	4	0.89	2.71	8225		(1, 2, 5, 7, 8)
Ammodytes tobianus	Common sandeel			1.5	7	0.68	3.08			(1, 2)
Anarhichas lupus	Atlantic wolffish	74.1	55.0	6.5	20	0.12	3.55	10000	5	(1, 2, 6, 9, 10)
Anguilla anguilla	European eel	72.7	46.3	12.9	44	0.10	3.55	2500000	1	(1, 6, 11)
Aphia minuta	Transparent goby		3.6	0.6	0.7	1.87	3.10	1800	0.34	(1, 2, 6)
Argentina spp.	Argentines	19.1	23.3	4.5	26	0.24	3.47	15239	2.53	(1, 2, 12, 13)
Argentina silus	Greater argentine		33.0	6.5	35	0.19	3.32	15239	1.8	(1, 2, 12, 13)
Argentina sphyraena	Lesser argentine		13.6	2.5	17	0.28	3.62		3.25	(1, 2)
Arnoglossus laterna	Mediterranean scaldfish	12.4	7.5	1.5	8	0.94	3.59	33333	0.7	(1, 2, 6, 14)
Brosme brosme	Tusk	56.4	40.0	6.5	20	0.08	3.90	2500000	1.4	(1-3, 6, 8)
Buglossidium luteum	Solenette	10.1	7.0	3.0	14	0.58	3.31	13400	0.8	(2, 6, 9, 15)
Callionymus spp.	Dragonets	18.2	11.5	1.9	5	0.55	3.29	10228^{a}	0.8	(1, 2, 6, 8, 16)
Callionymus lyra	Dragonet		16.3	3.5	6.6	0.55	3.27		0.9	(1, 2, 6, 8)
Callionymus maculatus	Spotted dragonet		10.7	1.3	5		3.31		0.7	(1, 6)
Callionymus reticulatus	Reticulated dragonet		7.6	1.0	3.3		3.28		0.8	(1, 6)
Capros aper	Boarfish	10.1	9.0	3.0	30	0.17	3.14	87720 ^b	1.	(2, 17)
Chelidonichthys cuculus	Red gurnard	27.1	25.6	3.7	21	0.49	3.81	100000 ^c	1.55	(2, 6, 18)
Chelidonichthys lucerna	Tub gurnard	34.7	37.5	3.5	14	0.39	3.98	100000	1.3	(2, 6, 19)
Ciliata mustela	Fivebeard rockling	18.6	13.0	1.0	4	0.65	3.50	19500	0.8	(2, 6, 20)
Ciliata septentrionalis	Northern rockling	11.6	12.9	1.0	2	0.79	3.50	19500 ^d	0.8^{d}	(1, 2)
Crystallogobius linearis	Crystal goby		2.7	0.4		0.97	3.40	450	0.4	(1, 2)
Cyclopterus lumpus	Lumpfish	38.9	29.4	3.5	6	0.26	3.89	194112	2.6	(1, 2, 6)

Species	Common name	Length	Length at maturity	Age at maturity	Lifespan	K	Trophic level	Fecundity	Offspring size	
Dicentrarchus labrax	European seabass	46.5	37.0	5.5	30	0.14	3.47	520278	1.3	(1, 2, 6, 8, 21, 22)
Dipturus batis	Blue skate	76.4	130.0	11.0	23	0.06	3.52	40	170	(1, 2, 6)
Echiichthys vipera	Lesser weever	12.5	10.0	1.0 ^e	14	0.33	4.41	57600	1.2	(1, 2, 6)
Enchelyopus cimbrius	Fourbeard rockling	21.6	15.0	3.0	9	0.20	3.53	25000	0.9	(1, 2, 6, 8)
Entelurus aequoreus	Snake pipefish	35.7	23.8	2.0	8	0.36	3.54	1000	1	(1, 23)
Eutrigla gurnardus	Grey gurnard	29.4	23.0	2.5	14	0.81	3.87	250000	1.45	(2, 6)
Gadiculus argenteus	Silvery pout	11.2	10.2	1.6	3	0.50	3.60	2763809^{f}	1	(1, 2, 6)
Gadus morhua	Atlantic cod	76.2	54.9	3.3	18	0.30	4.09	1000000	1.43	(1, 2, 6)
Gaidropsarus vulgaris	Three-bearded rockling	28.3	27.0	3.0	6	0.48	3.47	11018375 ^g	0.8	(1, 6, 24)
Galeorhinus galeus	Tope shark	104.9	117.0	10.0	40	0.08	4.34	29	280	(2, 25, 26)
Gasterosteus aculeatus	Three-spined stickleback	6.3	4.0	1.0	3	1.79	3.31	250	1.3	(1, 2, 6, 27)
Glyptocephalus cynoglossus	Witch flounder	37.2	44.5	5.5	25	0.20	3.17	278550	1.27	(1, 2, 6, 8)
Helicolenus dactylopterus	Blackbelly rosefish	17.0	24.5	14.3	43	0.08	3.54	230055	2.8	(1, 2, 6)
Hippoglossoides platessoides	American plaice	20.5	14.0	2.6	15	0.34	4.08	1525000	2.3	(1-3, 8, 9)
Hippoglossus hippoglossus	Atlantic halibut	64.0	83.0	5.8	50	0.10	4.00	1900000	3.4	(1-3, 28)
Hyperoplus immaculatus	Corbin's sandeel		21.2	2.9	11.8		4.38		0.8	(1, 6)
Hyperoplus lanceolatus	Greater sandeel		17.6	1.8	7.1		3.98	35000	0.8	(1, 6)
Lepidorhombus whiffiagonis	Megrim	39.2	26.3	2.8	12	0.16	4.34	333523	1.1	(1, 2, 6, 29, 30)
Leucoraja fullonica	Shagreen ray	74.7	75.0	7.0 ^h	24	0.12	3.50	63 ^h	65	(1, 6, 31)
Leucoraja naevus	Cuckoo ray	53.2	51.5	7.0	12	0.24	4.21	63	50	(2, 6, 32)
Limanda limanda	Common dab	22.9	18.8	1.7	12	0.26	3.39	100000	1	(1-3, 6, 8, 33)
Liparis spp.	Seasnails	12.3	9.1	1.0	1	1.02	3.52	627	1.3	(1, 2, 6)
Liparis liparis	Common seasnail		10.0	1.0		0.91	3.59	460	1.5	(1, 2, 6)
Liparis montagui	Montagu's seasnail		8.2	1.0		1.12	3.45	793	1.1	(1, 2)
Lophius budegassa	Blackbellied angler	56.5	59.5	8.2	21	0.11	4.41	1550000	1.8	(1, 2, 6)
Lophius piscatorius	Anglerfish	64.3	80.0	4.5	24	0.16	4.45	1000000	2.7	(1, 2, 6, 8, 9)
Lumpenus lampretaeformis	Snakeblenny	26.4	20.0	3.0	9	0.21	3.59	1000	0.8	(1-3, 6, 8, 9)
Melanogrammus aeglefinus	Haddock	37.5	28.3	2.2	11	0.26	4.03	535000	1.5	(1, 2, 6, 8, 9, 34)
Merlangius merlangus	Whiting	31.0	20.2	1.5	10	0.29	4.36	350800	1.28	(1, 2, 6, 8, 9)
Merluccius merluccius	European hake	45.6	41.3	3.8	12	0.11	4.42	294521	1	(1, 2, 6, 8, 35, 36)
Microchirus variegatus	Thickback sole	15.4	9.0	3.0	10	0.38	3.28	500000	1.3	(2, 6, 37)

Species	Common name	Length	Length at maturity	Age at maturity	Lifespan	K	Trophic level	Fecundity	Offspring size	References
Microstomus kitt	Lemon sole	29.7	27.0	3.8	23	0.19	3.21	200000	1.2	(2, 6, 9, 38)
Molva molva	Ling	95.7	65.0	6.0	20	0.17	4.40	40000000	1	(2, 4, 6)
Mullus surmuletus	Surmullet	21.0	16.5	1.5	10	0.29	3.45	10000	0.85	(1, 2, 6)
Mustelus spp.	Smooth-hounds	72.6	82.5	5.3	20	0.18	3.69	13	345	(1, 2, 39, 40)
Mustelus asterias	Starry smooth-hound		82.5	5.3	15.5	0.18	3.62	15	300	(1, 2, 39)
Mustelus mustelus	Smooth-hound				24		3.75	11	390	(1, 39, 40)
Myxine glutinosa	Atlantic hagfish	35.1	26.5	2.7	11	0.09^{i}	4.54	25	20	(1, 2, 6, 24)
Nerophis ophidion	Straight-nosed pipefish		17.9	0.7		1.05	4.01		1	(1, 23)
Pholis gunnellus	Rock gunnel	21.4	10.5	2.0	8.5	0.30	3.54	100	2	(1, 2, 6, 41)
Phrynorhombus norvegicus	Norwegian topknot	9.4	8.5	1.3	6	0.60	3.98	2666761 ^j	0.8	(1, 2, 4)
Phycis blennoides	Greater forkbeard	42.6	22.5	3.5	20	0.15	3.66	1643889	0.6	(1, 2, 42)
Platichthys flesus	European flounder	31.3	23.5	3.5	9	0.26	3.32	650000	1.06	(1, 2, 6)
Pleuronectes platessa	European plaice	31.4	28.0	2.5	28	0.23	3.23	146778	1.8	(1, 2, 6, 9)
Pollachius pollachius	Pollack	69.2	41.5	3.0	15	0.19	4.32	220000	1.15	(1, 2, 6, 8, 20)
Pollachius virens	Saithe	69.6	48.7	4.6	25	0.19	4.31	4831000	1.1	(1, 2, 6, 8, 9, 43)
Pomatoschistus minutus	Sand goby	42.7	0.5	0.9	3	0.93	3.22	3654	0.8	(1, 2, 6, 8)
Raja brachyura	Blonde ray	74.1	81.5	9.0	10	0.17	3.76	65	121.5	(1, 2, 44, 45)
Raja clavata	Thornback ray	66.3	71.8	8.0	15	0.16	3.84	61	70	(1, 2)
Raja montagui	Spotted ray	56.4	56.5	5.0	7	0.20	3.88	43	65.5	(1, 2)
Raniceps raninus	Tadpole fish	11.0	18.5	1.8	8	0.46	3.77	1021420^{f}	1.2 ^f	(1, 2)
Scophthalmus maximus	Turbot	49.6	40.0	3.3	38	0.24	4.36	4000000	1	(2, 6)
Scophthalmus rhombus	Brill	42.9	24.5	3.0	19	0.43	4.42	5000000	1.3	(2, 6)
Scyliorhinus canicula	Lesser spotted dogfish	60.2	55.5	7.3	14.5	0.14	3.82	46	59.5	(1, 2, 46, 47)
Sebastes viviparus	Norway redfish	23.8	12.5	20.0	39	0.10	4.03	8558	5.5	(2, 6, 9, 48)
Solea solea	Common sole	27.7	28.0	2.5	39.5	0.34	3.21	118050	1.2	(1, 2, 6)
Spinachia spinachia	Sea stickleback	32.1	14.1	1.0	1	1.78	3.50	170	2	(1, 2, 49)
Spondyliosoma cantharus	Black seabream	24.8	21.0	2.5	18	0.25	3.34	61396	0.65	(1, 2, 50)
Squalus acanthias	Picked dogfish	82.2	69.8	10.5	62.5	0.11	4.37	8	245	(1, 2, 46, 51, 52)
Syngnathidae	Other pipefishes	31.9	18.7	1.2	4^k	0.79	3.84	186	1.48	(1, 2, 6, 23)
Syngnathus acus	Greater pipefish		30.0	1.7			3.33	300	2.5	(1, 2, 23)
Syngnathus rostellatus	Nilsson's pipefish		10.0	1.0		0.75	3.69	100	1.2	(1, 2, 6, 23)

Species	Common name	Length	Length at maturity	Age at maturity	Lifespan	K	Trophic level	Fecundity	Offspring size	References
Syngnathus typhle	Deep-snouted pipefish		17.0	1.5		0.56	4.31	158	1.7	(1, 2, 23)
Trachinus draco	Greater weever	31.5	12.0	1.0	14	0.16	4.18	141273	1	(2, 6, 53, 54)
Translucent gobies	Translucent gobies	4.6	3.2	0.5	0.7	1.42	3.25	1125	0.37	(1, 2, 6)
Triglops murrayi	Moustache sculpin	11.0	12.9	3.5	10	0.19	3.45	100	1.75	(1, 4)
Trisopterus esmarkii	Norway pout	15.9	19.0	1.7	4	0.66	3.24	205595	1.1	(1, 2, 6, 9)
Trisopterus luscus	Bib	25.3	22.5	2.0	6	0.76	3.73	520238	1.1	(1, 2, 6, 9)
Trisopterus minutus	Poor cod	17.3	15.0	2.0	8	0.51	3.73	10000	1	(1, 2, 6, 8, 9, 55)
Zeugopterus punctatus	Topknot	11.0	15.7	2.4	8.8	0.31	3.99	2166761 ^j	1	(1, 2, 56)
Zeus faber	John dory	29.0	30.0	3.5	14	0.43	4.50	292500 ¹	2	(1, 2, 6)
Zoarces viviparus	Viviparous eelpout	15.8	17.8	1.5	6	0.43	3.47	100	3	(1, 2, 6)

^aInferred from *Callionymus kaianus*

^bOrder mean (Perciformes) ^cInferred from *Chelidonichthys lucerna*

^dInferred from *Ciliata mustela*

^eInferred from *Trachinus draco*

^fFamily mean (Gadidae)

^gFamily mean (Lotidae)

^hInferred from *Leucoraja naevus*

ⁱInferred from *Petromyzon marinus*

^jFamily mean (Scophthalmidae) ^kInferred from *Syngnathus leptorhynchus*

¹Inferred from *Zenopsis nebulosa*

Literature cited

- 1. Froese R, Pauly D (2017) Fishbase. *World Wide Web Electron Publ.* Available at: www.fishbase.org [Accessed July 7, 2017].
- 2. Heessen HJL, Daan N, Ellis JR (2015) *Fish atlas of the Celtic Sea, North Sea, and Baltic Sea* eds Heessen HJL, Daan N, Ellis JR (Wageningen Academic Publishers, Wageningen).
- 3. Muus BJ, Nielsen JG (1999) Sea fish: Scandinavian Fishing Year Book (Hedehusene).
- 4. Wienerroither R, et al. (2011) *Atlas of the Barents Sea fishes*. IMR/PINRO Joint Report Series 1-2011 (Institute of Marine Research, Bergen and Polar Research Institute of Marine Fisheries and Oceanography, Murmansk).
- 5. Bergstad OA, Hoines ÅS, Krüger-Johnsen EM (2001) Spawning time, age and size at maturity, and fecundity of sandeel, *Ammodytes marinus*, in the north-eastern North Sea and in unfished coastal waters off Norway. *Aquat Living Resour* 14(5):293–301.
- 6. Pecuchet L, Lindegren M, Hidalgo M, Delga M, et al. Reproductive traits (Fecundity, egg diameter, parental care) of marine European fish. *PANGAEA*: doi.org/10.1111/geb.12587.
- 7. Gauld JA, Hutcheon JR (1990) Spawning and fecundity in the lesser sandeel, *Ammodytes marinus* Raitt, in the north-western North Sea. *J Fish Biol* 36:611–613.
- 8. Gislason H, Pope JG, Rice JC, Daan N (2008) Coexistence in North Sea fish communities: implications for growth and natural mortality. *ICES J Mar Sci* 65(4):514–530.
- 9. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate Change and Distribution Shifts in Marine Fishes. *Science (80-)* 308(5730):1912–1915.
- Gunnarsson Á, Hjörleifsson E, Thórarinsson K, Marteinsdóttir G (2006) Growth, maturity and fecundity of wolffish *Anarhichas lupus* L. in Icelandic waters. *J Fish Biol* 68(4):1158–1176.
- 11. Narberhaus I, Krause J, Bernitt U (2012) *Threatened biodiversity in the German North and Baltic seas - Naturschutz und Biologische Vielfalt, Heft 117* (Federal Agency for Nature Conservation, Bonn).
- 12. Clarke MW, Kelly CJ, Connolly PL, Molloy JP (2001) A Life History Approach to the Assessment and Management of Deepwater Fisheries in the Northeast Atlantic. *Northwest Atl Fish Organ* 31:1–12.
- 13. Mazhirina GP (1991) *Nature of spawning and formation of fecundity in argentine (Argentina silus ascanius)* (ICES: C.M. H(57)).
- 14. Gibson RN, Ezzi IA (1980) The biology of the scaldfish, *Arnoglossus laterna* (Walbaum) on the west coast of Scotland. *J Fish Biol* (January 1975):575.
- Deniel C (1984) La reproduction des poissons plats (téléostéens-pleuronectiformes) en baie de Douarnez. 2. Cycles sexuels et fécondité des Soleidae: Solea vulgaris vulgaris, Solea lascaris, Buglossidium luteum et Microchirus variegatus = Flatfish reproduction in Douarnen. *Cah Biol Mar* 25(3):257–285.
- 16. Johnson CR (1973) Biology of the Dragonet, *Callionymus kaianzis moretonensis* Johnson (Pisces: Callionymidae). *Zool J Linn Soc* 52:217–230.
- 17. Farrell ED, Hüssy K, Coad JO, Clausen LW, Clarke MW (2012) Oocyte development and maturity classification of boarfish (*Capros aper*) in the Northeast Atlantic. *ICES J Mar Sci* 69(4):498–507.
- Marriott AL, Latchford JW, Mccarthy ID (2010) Population biology of the red gurnard (*Aspitrigla cuculus* L.; Triglidae) in the inshore waters of Eastern Anglesey and Northwest Wales. J Appl Ichthyol 26:504–512.
- 19. Işmen A, Işmen P, Başusta N (2004) Age, growth and reproduction of tub gurnard

(*Chelidonichthys lucerna* L. 1758) in the Bay of Iskenderun in the Eastern Mediterranean. *Turkish J Vet Anim Sci* 28(2):289–295.

- 20. Cohen, Nadia TITI (1990) An Annotated and Illustrated Catalogue of Cods, Hakes, Grenadiers and other Gadiform Fishes Known to Date. *FAO species Cat - Vol 10 Gadiform Fishes world (Order Gadiformes)*:442.
- 21. Ravard D, Brind'Amour A, Trenkel VM (2014) Evaluating the potential impact of fishing on demersal species in the Bay of Biscay using simulations and survey data. *Fish Res* 157:86–95.
- Wassef E, El Emary H (1989) Contribution to the biology of bass, *Dicentrarchus labrax* L. in the Egyptian Mediterranean waters off Alexandria. *Cymbrium* 13(4):327–345.
- 23. Braga Goncalves I, Ahnesjö I, Kvarnemo C (2011) The relationship between female body size and egg size in pipefishes. *J Fish Biol* 78(6):1847–1854.
- 24. Greenstreet SPR, Rossberg AG, Fox CJ, Le Quesne WJF, et al. (2012) Demersal fish biodiversity: species-level indicators and trends-based targets for the Marine Strategy Framework Directive. *ICES J Mar Sci* 69(10):1789–1801.
- 25. Compagno L (1984) Part 1 Hexanchiformes and Lamniformes. *FAO Species Cat Vol 4 Sharks world*.
- 26. Walker TI, et al. (2006) *Galeorhinus galeus*. *IUCN Red List Threat Species*. Available at: http://www.iucnredlist.org/details/39352/0.
- 27. Maitland PS, Campbell RN (1992) *Freshwater fishes of the British Isles* (HarperCollins Publishers, London).
- 28. Jennings S, Greenstreet SPR, Reynolds JD (1999) Structural change in an exploited fish community: A consequence of differential fishing effects on species with contrasting life histories. *J Anim Ecol* 68(3):617–627.
- 29. Macdonald P, Angus Née Laurenson CH, Marshall CT (2013) Spatial variation in life history characteristics of common megrim (*Lepidorhombus whiffiagonis*) on the Northern Shelf. *J Sea Res* 75:62–68.
- 30. Robson S (2004) Age, growth, reproductive biology and population dynamics of the common megrim *Lepidorhombus whiffiagonis* (Walbaum, 1792) from off the west coast of Ireland). Dissertation (Galway-Mayo Institute of Technology).
- 31. McCully SR, Scott F, Ellis JR (2012) Lengths at maturity and conversion factors for skates (Rajidae) around the British Isles, with an analysis of data in the literature. *ICES J Mar Sci* 69(10):1812–1822.
- 32. Maia C, Erzini K, Serra-Pereira B, Figueiredo I (2012) Reproductive biology of cuckoo ray *Leucoraja naevus*. *J Fish Biol* 81(4):1285–1296.
- 33. Bohl H (1957) Die Biologie der Kliesche (*Limanda limanda*) in der Nordsee. *Berichte der Dtsch wissenschaftlichen Kommission für Meeresforsch* 15:1–57.
- 34. Trippel EA, Neil SR (2004) Maternal and seasonal differences in egg sizes and spawning activity of northwest Atlantic haddock (*Melanogrammus aeglefinus*) in relation to body size and condition. *Can J Fish Aquat Sci* 61(11):2097–2110.
- 35. Vasilakopoulos P, Oneill FG, Marshall CT (2011) Misspent youth: Does catching immature fish affect fisheries sustainability? *ICES J Mar Sci* 68(7):1525–1534.
- 36. Mehault S, Domínguez-Petit R, Cerviño S, Saborido-Rey F (2010) Variability in total egg production and implications for management of the southern stock of European hake. *Fish Res* 104:111–122.
- 37. Félix PM, Vinagre C, Cabral HN (2011) Life-history traits of flatfish in the Northeast Atlantic and Mediterranean Sea. *J Appl Ichthyol* 27(1):100–111.
- 38. Newton AW, Armstrong DW (1974) A note on the fecundity of lemon sole. *ICES CM F:34*.

- 39. ICES (2017) Smooth-hounds in the Northeast Atlantic. *Report of the Working Group* on Elasmobranchs, 31 May-7 June 2017, Lisbon, Portugal. ICES CM 2017/ACOM:16 (Copenhagen), pp 589–621.
- 40. Goosen AJJ, Smale MJ (1997) A preliminary study of age and growth of the smoothhound shark *Mustelus mustelus* (Triakidae). *South African J Mar Sci* 18(1):85–91.
- 41. Gunnarsson Á, Gunnarsson K (2002) Temperature effects on growth and maturity of butterfish (*Pholis gunnellus*) in Iceland. *J Mar Biol Assoc UK* 82:903–906.
- 42. Fernandez-Arcaya U, et al. (2013) Reproductive strategies of NW Mediterranean deep-sea fish community. *Rapp Comm int Mer Médit 40*.
- 43. Storozhuk AY, Goloyanov AV, Golubyatnikova IP (1974) On the fecundity of Saithe (*Pollachius virens* L.) in the North Sea. *ICES: C.M. F(13) 4.*
- 44. Shark Trust (2009) Chapter 1: The British Isles. Part 1: Skates and Rays. *An Illustrated Compendium of Sharks, Skates, Rays and Chimaera*. Available at: https://www.sharktrust.org/shared/downloads/factsheets/cuckoo_ray_st_factsheet.pdf [Accessed 12 February, 2016].
- 45. Walker P, Hislop J (1998) Sensitive skates or resilient rays? Spatial and temporal shifts in ray species composition in the central and north-western North Sea between 1930 and the present day. *ICES J Mar Sci* 55:392–402.
- 46. Shark Trust (2010) Chapter 1: The British Isles and Northeast Atlantic. Part 2: Sharks. *An Illustrated Compendium of Sharks, Skates, Rays and Chimaera*. Available at: https://www.sharktrust.org/en/british sharks [Accessed 12 February, 2016].
- 47. Ellis JR, Shackley SE (1997) The reproductive biology of *Scyliorhinus canicula* in the Bristol Channel, U.K. *J Fish Biol* 51(2):361–372.
- 48. Drevetnyak K V, Kluev AI (2005) On fecundity of *Sebastes viviparus* from the North East Arctic. *ICES CM 2005/Q:31 Poster*, pp 1–11.
- 49. Munk P, Nielsen JG (2005) *Eggs and larvae of North Sea fishes* (Biofolia, Frederiksberg).
- 50. Gonçalves JMS, Erzini K (2000) The reproductive biology of *Spondyliosoma cantharus* (L.) from the SW Coast of Portugal. *Sci Mar* 64(4):403–411.
- 51. Cailliet GM, et al. (2001) Age determination and validation studies of marine fishes: do deep-dwellers live longer? *Exp Gerontol* 36(4–6):739–764.
- 52. Stenberg C (2005) Life history of the piked dogfish (*Squalus acanthias* L.) in Swedish waters. *J Northwest Atl Fish Sci* 35:155–164.
- 53. Ak O, Genç Y (2013) Growth and reproduction of the greater weever (*Trachinus draco* L ., 1758) along the eastern coast of the Black Sea. *J Black Sea/ Mediterr Environ* 19(1):95–110.
- 54. Bagge O (2004) The biology of the greater weever (*Trachinus draco*) in the commercial fishery of the Kattegat. *ICES J Mar Sci* 61(6):933–943.
- 55. Metin G, Ilkyaz AT, Kinacigil HT (2008) Growth, mortality, and reproduction of poor cod (*Trisopterus minutus* Linn., 1758) in the central Aegean sea. *Turkish J Zool* 32(1):43–51.
- 56. Kennedy M, Fitzmaurice P, Champ T (1973) *Pelagic Eggs of Fishes taken on the Irish Coast.* Irish Fisheries Investigations Series B, No. 8 (Department of Agriculture and Fisheries, Dublin).

Table S3 – Best models

Predictor variables that were selected by the corrected Akaike Information Criterion (AICc) to be in the best models for the temporal CWM traits (upper table) and spatial CWM traits (lower table). The explained deviance (adjusted R^2) of each model is given in the bottom row.

	Length	Length at maturity	Age at maturity	Lifespan	К	Trophic level	Fecundity	Offspring size
PCI	+	+	+	+			+	
Temperature	+	+	+	+			+	
Salinity		+	+	+	+		+	
Seasonality								+
R ² best model	0.61	0.78	0.55	0.37	0.11	0.08	0.52	0.01

Temporal models

Spatial models

	Length	Length at maturity	Age at maturity	Lifespan	К	Trophic level	Fecundity	Offspring size
Depth				+	+	+	+	+
Temperature	+	+				+	+	
Seasonality			+	+		+		
Otter trawl effort					+	+		
PCI					+			
Salinity								
Substrate richness								
Beam trawl effort								
R ² best model	0.03	0.05	0.06	0.53	0.47	0.59	0.52	0.02

Figure S1 – Size-independent growth rate

Von Bertalanffy's growth coefficient K is the rate (yr^{-1}) at which an individual fish reaches its asymptotic size (length infinity, L_{∞}). It follows from the Von Bertalanffy growth equation that describes body length as a function of age:

$$L_t = L_{\infty} - L_{\infty} \cdot e^{-K(t-t_0)}$$

where L_t is length (cm) at age t, L_{∞} is the asymptotic length (cm), K the growth coefficient (yr⁻¹), t is age (yr) and t₀ the theoretical age at size zero (yr).

The growth coefficient K is negatively correlated to L_{∞} . We therefore calculated an alternative growth rate that is independent of L_{∞} : growth rate ω in cm·yr⁻¹ that is calculated by multiplying K and L_{∞} (Gallucci & Quinn 1979). It represents growth rate in early in life (close to t₀) and can therefore be seen as juvenile growth rate.

The temporal and spatial community weighted means (CWM) of growth rate ω are plotted below as well as the rate of change in the spatio-temporal CWMs, calculated as the slope of a linear regression of the CWM growth rates per survey grid cell.

Figure S1. Time series (A), spatial patterns (B) and spatio-temporal trends (C) of the community weighted mean of growth rate ω (cm·yr⁻¹). Grey line with shaded area in A is a loess-smoother with confidence interval to visualize the main trend. Circles in C indicate significant temporal trends (small p < 0.05, medium p < 0.01, large p < 0.001).

References

Gallucci VF, Quinn TJ (1979) Reparameterizing, Fitting, and Testing a Simple Growth Model. Trans Am Fish Soc 108:14–25

Figure S2 – Modelled relationships temporal trends of traits

Figure S2. Selection of modelled relationships between environmental variables and temporal community weighted mean traits. Fitted lines are the modelled relationships through generalized additive models or generalized additive mixed models, grey dots are the partial residuals (plotted on y-axis) and the shaded area represents the 95% confidence interval. For plotting the partial residuals the best models were taken, i.e. models with the lowest corrected Akaike Information Criterion (AICc), see Table S3.

Figure S3 – Modelled relationships spatial trait patterns

Figure S3. Selection of modelled relationships between spatial community weighted mean traits and environmental and fishing variables. Fitted lines are the modelled relationship through generalized additive mixed models, grey dots are the partial residuals (plotted on y-axis) and the shaded area represents the 95% confidence interval. For plotting the partial residuals the best models were taken, i.e. models with the lowest corrected Akaike Information Criterion (AICc), see Table S3.

Figure S4 – Time series of environmental and fishing variables

Figure S4. Time series of sea bottom temperature (a), seasonal difference in temperature (b), sea bottom salinity (c), Phytoplankton Color Index (d), and fishing effort (black = beam trawl effort, grey = otter trawl effort; e). Grey line with shaded area is a loess-smoother with confidence interval to visualize the main trend. Only temparture, salinity, seasonality and PCI were used as predictor variables to model the temporal community weighted mean traits.

Figure S5 – Spatial distribution of environmental and fishing variables

Figure S5. Spatial distribution of depth (a), sea bottom temperature (b), seasonal difference in temperature (c), sea bottom salinity (d), Phytoplankton Colour Index (d), substrate richness (f), beam trawl effort (g) and otter trawl effort (h). All variables were used as predictors to model the spatial community weighted mean traits.