Text S1.

Validation of K_d and $Z_{10\%}$ calculation using radiometer measurements

At 19 of the 32 stations at which all absorption and backscattering parameters were measured, depth profiles of downwelling irradiance (E_d) were collected with a TriOS RAMSES ACC-Vis radiometer to measure the vertical attenuation coefficient of downwelling irradiance, K_d , and to estimate the depth at which downwelling PAR was reduced to 10% of surface PAR ($Z_{10\%}$). These measurements were collected in order to verify that the calculated light attenuation spectra from absorption and backscatter measurements were accurate. The radiometer data also allowed us to establish a simple empirical relationship between $Z_{10\%}$ and K_d at 520 nm (Fig. S3), which we used to determine the depth to which to calculate K_d (PAR) from the K_d spectra, as explained in Section 2.7 of the main text.

The radiometer was deployed on the sun side of the boat, and pushed approximately 1.5 m away from the boat using a pole with a pulley, and lowered to between 6.0–8.0 m over the course of 2–3 minutes. The reference sensor was mounted upright above the top of the boat and away from any obstructions such as communication aerials. Data were acquired every 4 s at 2-nm resolution from 318 to 950 nm, and processed into final, calibrated spectra using the TriOS software. Data were then exported and further analyzed in R to calculate K_d as the slope of a linear regression of the natural log of downwelling irradiance (E_d) versus depth. In some cases, surface focusing of sunlight caused high variability in measured E_d within the upper 1 to 1.5 m. In such cases, the surface data were removed, although this did not strongly affect the resulting K_d estimates. To assess the quality of the K_d estimate, we examined the r² values of the linear regression models at every wavelength, which were always higher than 0.84, and mostly higher than 0.90. The spectrum of E_d for each individual radiometer measurement was also converted to a total photon flux between 400 to 700 nm and K_d (PAR) calculated as the slope of a linear regression of the natural log of downwelling PAR versus depth. The depth of 10% PAR penetration was then calculated as 2.303/ K_d (PAR).

The K_d spectra measured with the radiometer agreed closely with the K_d spectra calculated from absorption and backscattering, except for two outliers, with a root mean squared error <0.06 m⁻¹ at most wavelengths and mean absolute percent error <12% (Fig. S1). The measured and calculated value of $Z_{10\%}$ also agreed well, with root mean square error of 0.84 m and mean absolute percent error of 10% (Fig. S2). For two stations, the measured K_d spectra differed from the calculated K_d spectra by 0.2–0.4 m⁻¹ (grey points in Fig. S1a). It is possible that these two radiometer K_d measurements were problematic, e.g. owing to accidental boat shadow effects, and these two stations were therefore omitted from the comparison.

Conversion of irradiance spectra to total photon flux of PAR

To calculate $K_d(PAR)$ from the calculated depth profiles of downwelling irradiance spectra (E_d) , which were calculated as described in Section 2.7, we converted the downwelling

spectra of E_d (which have units of W m⁻² nm⁻¹) to to the downward flux of photons, E_q , at each wavelength according to:

$$= [-2 -1] 10-9$$
 [photons m-2 s-1] (Eq. S1)

where *h* is Planck's constant and *c* is the speed of light in m s⁻¹. E_q was converted to µmol photons m⁻² s⁻¹ and then summed across the wavelength range of 400 to 700 nm to yield a quantum flux of PAR at each depth.

Determining the depth interval over which to calculate K_d (PAR)

 K_d at any individual wavelength shows very little variation with depth as long as the inherent optical properties of the water column remain constant. However, because K_d varies strongly according to wavelength (i.e., light at some wavelengths is attenuated much more rapidly with depth than light at other wavelengths), K_d (PAR) necessarily changes significantly with depth even if the inherent optical properties do not vary. More specifically, K_d (PAR) is typically greater at shallower depths because of the rapid vertical attenuation of light at some wavelengths. Deeper in the water, where the remaining light is already shifted towards wavelengths that are less rapidly attenuated with depth, K_d (PAR) is consequently greater. This means that estimates of $Z_{10\%}$ calculated from K_d (PAR) will also vary depending on the depth interval over which K_d (PAR) is calculated.

Since our main objective in calculating $K_d(PAR)$ was to quantify $Z_{10\%}$, $K_d(PAR)$ should ideally be calculated over the depth interval from the surface down to $Z_{10\%}$ rather than to a fixed, arbitrary depth. We therefore sought to first estimate the approximate depth of $Z_{10\%}$ for each date and used that preliminary estimate as the depth down to which to perform the regression of ln(PAR) *versus* depth for calculating $K_d(PAR)$. Using our 19 measured radiometer profiles (see above), we found that $Z_{10\%}$ was closely related to K_d at 520 nm:

where $K_d(520)$ is K_d at 520 nm (Fig. S3). We used this initial estimate of $Z_{10\%}$ for each station as the depth over which we calculated $K_d(PAR)$ by regressing ln(PAR) versus depth (see Section 2.7). The final value of $Z_{10\%}$ for each station was then calculated from $K_d(PAR)$ as described in Section 2.7.

Fig. S1. (a) Calculated K_d according to Lee et al. (2005) *versus* measured K_d from TriOS RAMSES radiometer (n = 19 spectra). For each station, the full spectrum of K_d is shown, with point colors indicating wavelength. Black line shows 1:1 relationship. The two outlier spectra shown in grey were omitted from the comparison between measured and calculated K_d . (b) Root mean square error between calculated and measured K_d at all wavelengths (n = 17). (c) Mean absolute percent error between calculated and measured K_d at all wavelengths (n = 17).

Fig. S2. Calculated (a) K_d (PAR) and (b) depth of 10% PAR penetration *versus* measurements taken with TriOS RAMSES radiometer (n = 17). Black lines show the 1:1 relationship. RMSE = root mean square error; MAPE = mean absolute percent error. Two outliers were removed from this comparison, as for Fig. S1.

Fig. S3. The measured depth of 10% PAR penetration ($Z_{10\%}$) was closely related to K_d at 520 nm with a power-law function (both measured with RAMSES radiometer). This relationship was used to determine the correct integration depth to calculate K_d (PAR) from the calculated K_d spectra throughout our time series.

Fig. S4. Full time series from October 2017 to early August 2020 of (a) CDOM concentration (as CDOM absorption coefficient at 440 nm), (b) CDOM spectral slope from 275–295 nm, (c) the CDOM spectral slope ratio S_R , (d) the specific UV absorbance SUVA₂₅₄, and (e) seawater salinity. The SW and NE Monsoon seasons are marked with brown and blue shading, respectively.

Fig. S5. Scatter plots showing that particulate backscattering at all other eight wavelengths was very closely related to particulate backscattering at 440 nm. All backscattering coefficients are in units of m^{-1} .

Fig. S6. Time series of chlorophyll-*a* concentration. The SW and NE Monsoon seasons are marked with brown and blue shading, respectively.

Table S1. Observed values of the diffuse attenuation coefficients of downwelling photosynthetically active radiation, K_d (PAR), and of downwelling irradiance at 500 nm, K_d (500), compared to the values of these attenuation coefficients in the absence of the potentially anthropogenic fraction of peatland-derived CDOM during the Southwest Monsoon measurements.

Date	Site	Latitude	Longitude	Observed	$K_d(PAR)$	Observed	$K_d(500)$
		(°N)	(°E)	$K_d(PAR)$	without	$K_d(500)$	without
				(m^{-1})	anthropogenic		anthropogenic
					CDOM (m^{-1})		$CDOM (m^{-1})$
2019-	Hantu	1.227	103.746	0.321	0.298	0.254	0.231
05-29							
2019-	Kusu	1 226	102 860	0 352	0.332	0.281	0.260
05-29	Kusu	1.220	105.800	0.332	0.332	0.201	0.200
2019-	Other	1.246	103.738	0.351	0.327	0.285	0.259
05-29							
2019-	Hantu	1.227	103.746	0.387	0.356	0.332	0.293
07-15							
2019-	Kusu	1.226	103.860	0.384	0.357	0.326	0.293
07-15							
2019-	Hantu	1 227	103 746	0 344	0.319	0 274	0 248
08-01	Hantu	1.227	105.740	0.544	0.517	0.274	0.240
2019-	Kusu	1 226	103 860	0 434	0.416	0 362	0 340
08-01	Rusu	1.220	105.000	0.151	0.110	0.502	0.510
2019-	Hantu	1 227	103 746	0.315	0 284	0 259	0.225
09-06	Trainta	1.227	105.710	0.515	0.201	0.209	0.225
2019-	Kusu	1 226	103 860	0.256	0 231	0 195	0.170
09-06	itusu	1.220	105.000	0.200	0.201	0.170	0.170
2020-	Hantu	1.227	103.746	0.484	0.453	0.442	0.394
06-25							
2020-	Kusu	1 226	103 860	0.615	0.587	0 562	0.521
06-25	12000	10	100.000	0.010	0.007	0.002	0.021
2020-	Hantu	1.227	103.746	0.386	0.335	0.352	0.284
07-16				0.200			
2020-	Kusu	1.226	103 860	0 391	0 352	0 343	0.292
07-16	12000	10	100.000	0.031	0.000	0.0.0	
2020-	Hantu	1 227	103 746	0 295	0 271	0 232	0 206
07-30	Trainta	1.227	105.710	0.295	0.271	0.232	0.200
2020-	Kusu	1 2 2 6	103 860	0.236	0.216	0 1 7 0	0.153
07-30	ILUDU	1.220	105.000	0.230	0.210	0.170	0.100