

Fig. S1. Illustration of otolith preparation processes for posterior microchemical analyses.



Fig. S2. Transverse section (top image) of a 30 cm FL yellowfin tuna (*Thunnus albacares*) otolith (bottom image). Position of the core (C), inflection point (IP) and edge (E) are indicated, while white arrow in the transverse section depicts the otolith growth axis. The approximate dorsal/ventral, anterior/posterior and proximal/distal axes and sulcus position are given for orientation.



Fig. S3. Frequency histograms showing the distribution of estimated spawning dates (year and month) of young-of-the-year (YOY) yellowfin tuna (*Thunnus albacares*) collected in four nursery areas Madagascar (yellow), Seychelles-Somalia (blue), Maldives (pink) and Sumatra (green) of the Indian Ocean.



Fig. S4. Raw <sup>43</sup>Ca composition within otolith transverse sections.



Fig. S5. Predicted spatial variations in isotopic composition of oxygen in otoliths ( $\delta^{18}O_{oto}$ ) following Trueman and MacKenzie (2012) and based on global surface water (0-50 m) measured  $\delta^{18}O_w$  values (LeGrande & Schmidt 2006), and parameters  $\gamma$  and  $\beta$  from Kitagawa et al., (2013). Maps are differentiated for summer monsoon (Jun-Sept 2017) and winter monsoon (Dec-Apr 2016-2017). Monthly data of Sea Surface Temperature (SST, °C) was obtained from the "global-reanalysis-phy-001-031-grepv2-montlhy" dataset available in the EU Copernicus Marine Service Information. Note that this simplistic model assumes constant parameters for the otolith fractionation equation and is based on coupled measurements of  $\delta^{18}O_w$  values and SST at a spatial resolution of  $1 \times 1^{\circ}$  grid.

| FL   | Age    | Sampling   | Sampling     | Approach                | Study          |
|------|--------|------------|--------------|-------------------------|----------------|
|      | (days) | date       | location     |                         |                |
| 39   | 107    | 30/04/2013 | Eastern      | Otolith microincrement  | Proctor et al. |
|      |        |            | Indian Ocean | counts                  | (2019)         |
| 40   | 108    | 29/04/2013 | Eastern      | Otolith microincrement  | Proctor et al. |
|      |        |            | Indian Ocean | counts                  | (2019)         |
| 40   | 137    | 30/04/2013 | Eastern      | Otolith microincrement  | Proctor et al. |
|      |        |            | Indian Ocean | counts                  | (2019)         |
| 40   | 113    | 30/04/2013 | Eastern      | Otolith microincrement  | Proctor et al. |
|      |        |            | Indian Ocean | counts                  | (2019)         |
| 40   | 116    | 24/06/2014 | Eastern      | Otolith microincrement  | Proctor et al. |
|      |        |            | Indian Ocean | counts                  | (2019)         |
| 40   | 115    | 25/06/2014 | Eastern      | Otolith microincrement  | Proctor et al. |
|      |        |            | Indian Ocean | counts                  | (2019)         |
| 40   | 122    | 24/06/2014 | Eastern      | Otolith microincrement  | Proctor et al. |
|      |        |            | Indian Ocean | counts                  | (2019)         |
| 40   | 117    | 17/06/2014 | Eastern      | Otolith microincrement  | Proctor et al. |
|      |        |            | Indian Ocean | counts                  | (2019)         |
| 40   | 130    | 17/06/2014 | Eastern      | Otolith microincrement  | Proctor et al. |
|      |        |            | Indian Ocean | counts                  | (2019)         |
| 29.5 | 80     | 06/08/2017 | Western      | Otolith microincrement  | This study     |
|      |        |            | Indian Ocean | counts                  |                |
| 36.5 | 95     | 27/06/2017 | Western      | Otolith microincrement  | This study     |
|      |        |            | Indian Ocean | counts                  |                |
| 36.5 | 98     | 25/08/2017 | Western      | Otolith microincrement  | This study     |
|      |        |            | Indian Ocean | counts                  |                |
| 38   | 112    | 26/08/2017 | Western      | Otolith microincrement  | This study     |
|      |        |            | Indian Ocean | counts                  |                |
| 34   | 89     | 26/08/2017 | Western      | Otolith microincrement  | This study     |
|      |        |            | Indian Ocean | counts                  |                |
| 3.12 | 30     | -          | -            | Direct measures of tank | Kobayashi et   |
|      |        |            |              | reared fish             | al. (2015)     |
| 2.46 | 27     | -          | -            | Direct measures of tank | Kobayashi et   |
|      |        |            |              | reared fish             | al. (2015)     |
| 2.16 | 24     | -          | -            | Direct measures of tank | Kobayashi et   |
|      |        |            |              | reared fish             | al. (2015)     |

Table S1. Summary of yellowfin tuna (*Thunnus albacares*) individuals used for young-of-the-year (YOY) age estimation. Size is fork length (FL) in cm.

Table S2. Summary of data distribution by nursery region. Normality was obtained performing the Shapiro-Wilk test of normality, *shapiro.test* {stats} function implemented in R. Significant deviations from normality are highlighted as follows \*P<0.05, \*\*P<0.01. Skewness was calculated following the formula from (Joanes & Gill 1998) with the *skewness* {e1071} function implemented in R.

| Element | Test<br>measure | Madagascar | Seychelles-<br>Somalia | Maldives | Sumatra   | All       |
|---------|-----------------|------------|------------------------|----------|-----------|-----------|
|         |                 |            |                        |          |           |           |
| Ba      | Normality       | 0.002**    | 0.132                  | 0.012*   | 0.038*    | <0.001**  |
|         | Skewness        | 1.391      | 0.512                  | 1.180    | 0.976     | 1.622     |
| Li      | Normality       | 0.484      | 0.755                  | 0.581    | 0.930     | 0.511     |
|         | Skewness        | 0.259      | 0.165                  | 0.459    | 0.0626    | 0.273     |
| Mg      | Normality       | 0.003**    | <0.001**               | 0.003**  | 0.002**   | <0.001**  |
|         | Skewness        | 1.453      | 1.636                  | 1.179    | 1.393     | 1.816     |
| Mn      | Normality       | 0.334      | 0.257                  | <0.001** | < 0.001** | < 0.001** |
|         | Skewness        | 0.624      | 0.333                  | 1.359    | 1.172     | 1.961     |
| Sr      | Normality       | 0.012*     | 0.616                  | 0.128    | 0.054     | < 0.001** |
|         | Skewness        | 1.273      | 0.179                  | 0.185    | 0.818     | 0.807     |
| Zn      | Normality       | 0.002**    | 0.002**                | <0.001** | <0.001**  | < 0.001** |
|         | Skewness        | 0.980      | 1.139                  | 1.603    | 1.731     | 1.515     |
| δ13C    | Normality       | 0.785      | 0.853                  | 0.095    | 0.532     | 0.848     |
|         | Skewness        | -0.216     | 0.123                  | -0.551   | 0.205     | -0.040    |
| δ18Ο    | Normality       | 0.153      | 0.791                  | 0.531    | 0.549     | 0.212     |
|         | Skewness        | -0.533     | 0.010                  | -0.854   | 0.375     | -0.333    |

Table S3. Homogeneity of variances between nursery regions. Homoscedasticity was calculated performing *fligner.test* {stats} function implemented in R. Significant differences in nursery variances are highlighted as follows \*P < 0.05, \*\*P < 0.01.

| Ba    | Li    | Mg    | Mn       | Sr    | Zn    | <b>δ13</b> C | δ18Ο   |
|-------|-------|-------|----------|-------|-------|--------------|--------|
| 0.242 | 0.334 | 0.101 | <0.001** | 0.058 | 0.289 | 0.976        | 0.017* |

Table S4. Within nursery interannual variability (2017vs 2018) in otolith trace element and stable isotope composition of young-of-the-year (YOY) yellowfin tuna (*Thunnus albacares*) from the Indian Ocean. Yuen test was used for comparisons, *yuen* {WRS2}, which performs independent samples t-tests on robust location measures including effect sizes. Test value (t), degrees of freedom (df) and P values are reported. Significant differences are highlighted as follows \*P<0.05, \*\*P<0.01

| Element           |    | Seychelles-Somalia | Maldives | Sumatra |
|-------------------|----|--------------------|----------|---------|
| Li                | t  | 1.005              | 2.369    | 1.815   |
|                   | df | 12.56              | 13.11    | 15.35   |
|                   | Р  | 0.334              | 0.034*   | 0.089   |
| Mg                | t  | 0.193              | 3.441    | 0.696   |
|                   | df | 17.55              | 11.75    | 14.03   |
|                   | Р  | 0.850              | 0.005**  | 0.496   |
| Sr                | t  | 1.202              | 2.49     | 0.272   |
|                   | df | 16.43              | 12.76    | 16.5    |
|                   | Р  | 0.246              | 0.027*   | 0.789   |
| Ba                | t  | 0.773              | 1.131    | 0.343   |
|                   | df | 17.88              | 15.23    | 11.45   |
|                   | Р  | 0.449              | 0.276    | 0.738   |
| Mn                | t  | 1.483              | 4.29     | 1.678   |
|                   | df | 10.86              | 9.67     | 13.16   |
|                   | Р  | 0.167              | 0.002**  | 0.117   |
| δ <sup>13</sup> C | t  | 0.792              | 1.195    | 0.879   |
|                   | df | 19.78              | 16.59    | 16.82   |
|                   | Р  | 0.438              | 0.249    | 0.392   |
| δ <sup>18</sup> O | t  | 1.618              | 0.478    | 0.129   |
|                   | df | 19.26              | 16.1     | 14.65   |
|                   | Р  | 0.122              | 0.639    | 0.899   |

## Literature cited

- Joanes DN, Gill CA (1998) Comparing measures of sample skewness and kurtosis. The statician:183–189.
- Kitagawa T, Ishimura T, Uozato R, Shirai K, Amano Y, Shinoda A, Otake T, Tsunogai U, Kimura S (2013) Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature. Mar Ecol Prog Ser 481:199–209.
- LeGrande AN, Schmidt GA (2006) Global gridded data set of the oxygen isotopic composition in seawater. Geophys Res Lett 33.
- Trueman CN, MacKenzie K (2012) Identifying migrations in marine fishes through stableisotope analysis. J Fish Biol 81:826–847.