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Supplement 1 

Text S1. Validating strip transect detection assumptions

The digital survey was based on strip transect sampling. To verify the assumption that all 
seals on the strip are detected and counted, we estimated the number of photographs 
predicted to contain seals with a closed-capture capture-recapture analysis. An encounter 
history matrix with three “encounters” was built, where encounter columns represented the 
three observers. For all images with detections, a ‘1’ recorded that a specific observer 
detected the seal, whereas a ‘0’ recorded that a specific observer detected no seals in a 
particular image. Observer-specific detection probability was subsequently estimated by 
fitting a closed-capture Huggins model in MARK 8.0 (White and Burnham 1999) with ‘time’ 
(i.e., observer) as an explanatory variable.

Observer-specific detection probability (p) on transect lines was p1 = 0.66 (95 % confidence 
interval: 0.59 – 0.72), p2 = 0.86 (0.80 – 0.90) and p3 = 0.98 (0.94 – 0.99), respectively. The 
closed-capture Huggins model predicted that 185 (95 % confidence interval: 185 – 188) 
photographs contained seals. This result validates our “observed” data (we selected 185 
images with seals) and the use of strip transect methods for the digital survey.

https://doi.org/10.3354/meps13787


Supplement to Oosthuizen et al. (2021) – Mar Ecol Prog Ser 673: 211–227 – https://doi.org/10.3354/meps13787

4

Supplement 2

Text S2. Haulout behaviour of pack ice seals and estimates of availability to sampling

We used the time spent in and out of the water by satellite tagged crabeater and Weddell seals 
(Southwell 2005, Bengtson et al. 2011, Forcada et al. 2012) to correct on-ice abundance 
estimates. These studies showed that the probability of being hauled out consistently peaked 
around 0.7 in the hours on either side of local mid-day, when most of our surveys were 
conducted. Our main analysis thus assumed that 70 % of seals were available for detection 
during both the digital and visual surveys.”

Forcada et al. (2012) conducted most of their surveys between 11:00 and 17:00 (thus one 
hour later in the afternoon than our surveys) and recorded a mean haul-out probability of 0.64 
for crabeater seals and 0.65 for Weddell seals. Our slightly higher estimate is justified by not 
conducting surveys after 16:00 (when fewer seals are hauled out). 

Southwell (2005) collected data on haulout behaviour of crabeater seals during the breeding 
season, which coincides with our digital survey. Southwell (2005) found “a high, relatively 
constant proportion of seals were hauled out over a period of 6-7 h during daylight” and that 
“variation in haulout behaviour between seals was low” (Figure S1).

Figure S1. Haulout pattern of crabeater seals relative to local time (solar hour). The bold line 
is the mean proportion of days when a 20-minute period was recorded as ‘dry’ (hauled out); 

vertical lines indicate among-seal variation (± standard deviation). The orange horizontal line 
marks the 0.7 estimate used as an availability parameter in density surface models. Figure 
reproduced from Southwell (2005).

Bengtson et al. (2011) also found that haul-out probability of crabeater seals peaked around 
mid-day (local solar time) through December to March (Figure S2). 
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Figure S2. Haulout pattern of crabeater seals relative to local time (solar hour). The orange 
horizontal line marks the 0.7 estimate used as an availability parameter in density surface 
models. Figure reproduced from Bengtson et al. (2011).

There is, however, individual variation in availability (e.g., due to different haulout behaviour 
of breeding and nonbreeding seals; Southwell 2005). Gurarie et al. (2017) used the crabeater 
seal haulout probabilities from Bengtson et al. (2011) to adjust their crabeater seal abundance 
estimates. Gurarie et al. (2017)’s figure (Figure S3) indicate a broad peak in haulout 
probabilities around mid-day of approximately 80 % in November, which decreased to 70 –
75 % in January February, and to 60 % in March. For Weddell seals, Gurarie et al. (2017) 
presented hourly haul-out percentages for seals instrumented at Drescher Inlet in January-
March. These data also indicated low variation in haulout behaviour and haulout probabilities 
of near 70 % in the hours before and after solar mid-day (Figure S4).  

Figure S3. Crabeater seal haulout probabilities from November to March. The black 
horizontal line marks the 0.7 estimate used as an availability parameter in density surface 
models. Figure reproduced from Gurarie et al. (2017).
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Figure S4. Weddell seal haulout probabilities from January to March. The orange horizontal 
line marks the 0.7 estimate used as an availability parameter in density surface models. 
Figure reproduced from Gurarie et al. (2017).
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Supplement 3

Text S3. Extrapolation assessment with “dsmextra”

Habitat models allow animal densities to be extrapolated from sampled to unsampled 
locations (e.g., Mannocci et al. 2015, Derville et al. 2018, Purdon et al. 2020, Wege et al. 
2020). However, extrapolations to conditions outside the range of those encountered in the 
surveyed area can easily lead to unreasonable results. Several factors influence the reliability 
of predictions in unsampled areas, including the environmental similarity between locations 
where data were collected and those where predictions are made (Conn et al. 2015, Bouchet 
et al. 2020, Sequeira et al. 2018).

We limited predictions of pack ice seal densities to areas of multivariate environmental space 
(cf. geographic extrapolation) that was informed by reference (survey) data. We used the 
package “dsmextra” (Bouchet et al. 2019) in R 3.6.3 (R Core Team 2020) to quantify and 
visualise extrapolation in environmental space, and to set boundaries of prediction areas. We 
limited our prediction area to cells where environmental conditions were within the sampled 
range of the covariate data and avoided both univariate and combinatorial extrapolation. 
Additionally, the percentage of data nearby (%N) was used as a quantitative measure of the 
proportion of reference data lying within the ‘neighbourhood’ of any prediction cell. We 
focus our DSM inference on areas that were informed by at least 10 % reference data (%N > 
10 %) in the neighbourhood of prediction cells (Bouchet et al. 2020). Full methodological 
details regarding extrapolation analyses are given in Bouchet et al. (2020). Examples of other 
marine mammal studies that mapped extrapolations in environmental space in the context of 
habitat-based density surface models include Mannocci et al. (2015) and García-Barón et al. 
(2019).
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Extrapolation assessment of digital strip transect survey

Figure S5. Map showing
extrapolation (ExDet) values and 
transect lines. The prediction 
grid used for the digital strip 
transect survey density surface 
models was limited to analogue 
conditions, i.e. the green shading 
on this figure. The prediction 
grid excluded areas where
univariate (orange shading on 
figure) or combinatorial 
extrapolation was required. 

Figure S6. Map showing
proportion of data nearby (%N) 
and transect lines for the digital 
strip transect survey.  We focus 
our DSM inference on areas that 
were informed by at least 10 % 
reference data (%N > 10 %) in 
the neighbourhood of prediction 
cells. Predictions in areas where 
%N was less than 10 % but more 
than zero (%N > 0 %) are more 
speculative (cross-hatched in 
figures presented in the main 
text). 
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Extrapolation assessment of visual line transect survey

Figure S7. Map showing
extrapolation (ExDet) values and 
transect lines. The prediction 
grid used for the visual line 
transect survey density surface 
models was limited to analogue 
conditions, i.e. the green shading 
on this figure. The prediction 
grid excluded areas where 
univariate (orange shading on 
figure) or combinatorial 
extrapolation was required. 

Figure S8. Map showing
proportion of data nearby (%N) 
and transect lines for the visual 
line transect survey.  We focus 
our DSM inference on areas that 
were informed by at least 10 % 
reference data (%N > 10 %) in 
the neighbourhood of prediction 
cells. Predictions in areas where 
%N was less than 10 % but more 
than zero (%N > 0 %) are more 
speculative (cross-hatched in 
figures presented in the main 
text). 
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Figure S9. Density distributions (bandwidth adjustment = 0.2) of environmental covariates 
along grid cells covered by transects of the digital strip transect survey, and within the main 
prediction area (%N > 10 %).  
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Figure S10. Density distributions (bandwidth adjustment = 0.2) of environmental covariates 
along grid cells covered by transects of the visual line transect survey, and within the main 
prediction area (%N > 10 %).  
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Supplement 4

Text S4. Environmental covariates used in density surface models of pack ice seals in the 
southern Weddell Sea

Depth (m)
Source: General Bathymetric Chart of the Oceans (British Oceanographic Data Centre) 

http://www.gebco.net at a resolution of 0.125°. 
Depth is important for benthic vs. pelagic foraging in marine predators, and indicates whether 

locations are on the continental shelf (typically depths of 300 m to 500 m) or off the 
continental shelf (e.g., depths beyond 1000 m).

Bottom slope (°)
Source: Derived from General Bathymetric Chart of the Oceans bathymetry data using the 

raster::terrain function in R (with opt = “slope”).
Higher turbulence and upwelling of Circumpolar Deep Water (or Warm Deep Water) along 

steep continental slopes can increase local marine productivity.

Distance to continental shelf break (km)
Source: Derived from General Bathymetric Chart of the Oceans bathymetry data. We 

calculated distance (using function raster::distance) to the 1000 m isobath at the 
continental shelf edge, and excluded the 1000 m isobath in the southern Filchner Trough 
from this derivation.

Upwelling of nutrient-rich Warm Deep Water along the continental shelf break slopes and 
across-shelf transport of Warm Deep Water by the Antarctic Slope Front may increase 
local biological productivity in the vicinity of the continental shelf break.

Distance to coast (km)
Source: Derived from General Bathymetric Chart of the Oceans bathymetry data. We 

calculated distance (using function raster::distance) the nearest 0 m (sea level) isobath.
Weddell seals often haul out on coastal fast-ice, and may preferentially forage near these 

haulouts. 

https://doi.org/10.3354/meps13787
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Sea ice concentration (%)
Source: NSIDC concentration data, processed by the SMMR/SSMI NASA Team 

(http://nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html). Sea ice concentration 
data (resolution 12.5 km) were obtained for every day that surveys took place. We 
matched the segment survey dates to the nearest daily data, and calculated the average 
sea ice concentration 

Sea ice is a critical habitat for pack ice seals. The physical characteristics and extent of the 
sea ice (e.g., coastal fast ice, interior pack ice, marginal ice zone, etc.) are important 
variables structuring pack ice seal distribution.

Distance to ice edge (km)
Source: NSIDC concentration data derivative. To calculate distance to the sea ice edge, we 

first calculate a contour line for 15% sea ice concentration (using function 
raster::rasterToContour in R) and we then calculate, for each pixel, the distance to the 
nearest position along the contour line using function raster::distance. Visual inspection 
of the daily sea ice concentration data showed that spurious sea ice edges due to very 
small, isolated sea ice or open water features (but not included true polynyas) were not 
present in our case. In January 2014, the nearest distance to the ice edge probably started 
out as a large polynya, which opened into open water to the north in February.

The ice edge (including polynya ice edges) is an important foraging habitat for marine 
predators, including some pack ice seal species (e.g., Gurarie et al. 2017, Michelot et al.
2020). 

Proportion of time the ocean is covered by sea ice of concentration 85 % or higher 
(“multiyear sea ice cover”) (%)

Source: AMSR-E satellite estimates of daily sea ice concentration at 6.25 km resolution. 
Concentration data from 1-Jan-2003 to 31-Dec-2010 was used to calculate sea ice cover 
consistency over multiple years. The fraction of time each pixel was covered by sea ice 
of at least 85% concentration was calculated for each pixel in the original (Polar 
stereographic) grid. The data was subsequently regridded to 0.1-degree grid using 
triangle-based linear interpolation. Data obtained from 
https://data.aad.gov.au/metadata/records/Polar_Environmental_Data.

(Maps of environmental covariates appear on following pages)

https://doi.org/10.3354/meps13787
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Digital strip transect survey (November 2013)

Figure S11. Environmental variables used as covariates in density surface models of digital 
strip transect data. Distance to the coast (COAST) is given as distance (km) to the nearest 
coastline; depth (DEPTH) is the ocean depth (m) derived from bathymetry data; sea ice 
concentration (ICE) is satellite derived sea ice concentration given in %; distance to the ice 
edge (ICEDIST) is the distance (km) to the nearest 15 % ice concentration contour line (the 
daily 15 % contour lines are shown, in blue, on the maps of the January and February 2014 
visual transect surveys, but were outside the boundary of the maps in the November 2013 
digital surveys.  
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Figure S11 (continued). ICEPROP is the proportion of time (%) that the ocean is covered by 
sea ice of concentration 85 % or higher (“multiyear sea ice cover”); the distance (km) to the 
continental ice shelf (SHELF) was derived as the distance to the 1,000 m bathymetric 
contour; SLOPE is the gradient of the ocean floor slope (in degrees) as derived from 
bathymetry data.  
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Visual line transect survey (January to February 2014)

Figure S12. Environmental variables used as covariates in density surface models of visual 
line transect data. Distance to the coast (COAST) is given as distance (km) to the nearest 
coastline; depth (DEPTH) is the ocean depth (m) derived from bathymetry data; sea ice 
concentration (ICE) is satellite derived sea ice concentration given in %; distance to the ice 
edge (ICEDIST) is the distance (km) to the nearest 15 % ice concentration contour line. The 
15 % contour lines of ice concentration for each survey date are shown in blue on the ICE 
and ICEDIST maps. 
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Figure S12 (continued). ICEPROP is the proportion of time (%) that the ocean is covered by 
sea ice of concentration 85 % or higher (“multiyear sea ice cover”); the distance (km) to the 
continental ice shelf (SHELF) was derived as the distance to the 1,000 m bathymetric 
contour; SLOPE is the gradient of the ocean floor slope (in degrees) as derived from 
bathymetry data.  

https://doi.org/10.3354/meps13787


Supplement to Oosthuizen et al. (2021) – Mar Ecol Prog Ser 673: 211–227 – https://doi.org/10.3354/meps13787

18

Supplement 5

Text S5. Ecosystem surveys in the southern Weddell Sea (January to February 2014)

Macrozooplankton survey

Macrozooplankton was sampled with a Multiple opening Rectangular Midwater Trawl (M-
RMT). We used data from 22 stations (sampled from 2 January 2014 to 11 February 2014) 
where depth-stratified hauls were collected from a depth of 200 m to the surface. The krill 
species Euphausia superba, Euphausia crystallorophias and Thysanoessa macrura were 
identified from catches. We used the density of E. superba and E. crystallorophias
(abundance per volume filtered), expressed as individuals m-3, as an index of 
macrozooplankton abundance. 

Fish survey

Pleuragramma antarctica and Trematomus spp. were obtained from 21 scientific bottom 
trawls made between 3 January 2014 and 12 February 2014 at water depths between 214 m 
and 1,750 m. Fish biomass data were recorded per species immediately after each trawl. We 
used the total biomass (g) per catch, standardized to an area of 1,000 m², as a measure of fish 
abundance.  

Additional information is available in Knust and Schröder (2014).
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Supplement 6

Table S1. Digital strip transect survey density surface models (DSMs) and model 
diagnostics

Table S1. Density surface models fitted to digital strip transect survey data collected in the 
Weddell Sea, Antarctica, in November 2013. All combinations of “uncorrelated” (Spearman 
|r| < |0.7|) covariates were fitted as models. Abundance (푁) was predicted to a prediction grid 
(57,031 km2) that did not require univariate or combinatorial extrapolation and that had at 
least 10 % (%N ≥ 10 %) reference data nearby.

Response 
distri-
bution1 Model smooth terms2 AIC REML

Deviance 
explained 
(%) 푵

푵 (95% 
CI)

tw
(p=1.12)

s(ice concentration)
s(time with ice ≥85%)
s(depth)
s(distance to shelf break) 519.2 258.8 24.79 39,939

33,582 -
47,500

tw
(p=1.12)

s(ice concentration)
s(time with ice ≥85%)
s(slope) 522.6 259.9 23.12 40,840

34,322 -
48,596

tw
(p=1.12)

s(ice concentration)
s(distance to ice)
s(depth)
s(distance to shelf break) 524.9 260.4 22.57 39,614

33,057 -
47,472

tw
(p=1.12)

s(ice concentration)
s(distance to coast)
s(depth)
s(distance to shelf break) 525.9 260.9 22.17 39,752

33,142 -
47,680

tw
(p=1.12)

s(ice concentration)
s(distance to ice)
s(slope) 527.9 261.5 19.32 38,444

32,340 -
45,702

tw
(p=1.13)

s(ice concentration)
s(distance to coast)
s(slope) 529.0 262.0 18.81 38,922

32,716 -
46,305

1. Response distribution: tw = Tweedie. The same set of models were fitted with a negative 
binomial response distribution, but these models had higher AIC values and poorer model 
diagnostics. 
2. Model smooth terms: ice concentration = sea ice concentration, time with ice ≥85% = the 
fraction of time the ocean is covered by sea ice of concentration 85 % or higher (“multiyear 
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sea ice cover”), depth = depth, distance to shelf break = distance to continental shelf break, 
slope = bottom slope, distance to ice = distance to sea ice edge, distance to coast = distance to 
nearest coast.

Figure S13. Normal Q–Q plot, randomised quantile residuals versus linear predictor plot, and 
correlogram for the digital strip transect survey density surface model with the lowest AIC 
(Table S1). The correlogram showed weak autocorrelation (r = 0.19 at a lag of 1 segment) in 
the model residuals. 
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Supplement 7

Figure S14. Digital strip transect survey imagery 

Figure S14. Two high-resolution images from the digital strip transect survey showing typical 
sea ice conditions in the southern Weddell Sea during November 2013. Inset: seals hauled out 
on ice (magnified view of encircled area).  
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Supplement 8

Text S6. Detection function modelling

Distance sampling methods assume detectability is primarily related to the distance between 
objects and the observer. The detection probability is modelled as a function of the 
perpendicular distance, under the assumption that all objects within the immediate vicinity of 
the track line are detected (i.e., g(0) = 1)) (Burt et al. 2014). We assumed that g(0) equalled 
unity and consider this assumption plausible given that seal densities were relatively low and 
taking the experience level of the observers into account.

The detection function in the visual line transect survey was characterized by a wide shoulder
(Figure S11). The most parsimonious model (Table S2) contained a hazard-rate key function 
and observer as a covariate. Average detection probability was 0.57 (CV = 0.04) and a Chi-
square goodness of fit test showed that the detection function fitted the data well (휒 = 0.02, 
p = 0.88). Failure to adopt distance sampling methodology would therefore have 
underestimated seal densities by an average of 1.78 times in each surveyed segment.

Figure S15. Detection probabilities for the visual line transect survey. Observers on the left 
and right side of the aircraft had different detection functions.

https://doi.org/10.3354/meps13787
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Table S2. Detection function modelling

Table S2. Detection function model selection results. Half-normal (hn) and hazard-rate (hr) 
detection functions were fitted via maximum likelihood to describe the decrease in detection 
probability with distance from the line. Observer, group size (range 1 to 6, fitted as a factor 
with two levels (1, ≥ 2) or as a continuous covariate), seal species, mean visibility and ice 
structure were included as covariates. The model in bold font was selected. The model hr + 
Ice structure had zero degrees of freedom in the Chi-square goodness of fit test and was 
therefore not considered as a plausible model. No covariates were considered where model 
key functions were paired with cosine adjustment terms. np is the number of parameters. 
ΔAIC is the difference in AIC between the model with the lowest AIC value and the relevant 
model.

Model key 
function Covariate

np Δ AIC
Average 
detection 

(p)
SE (p)

hr Observer 3 0.00 0.57 0.02

hn
Observer + size 
(factor)

3
3.85 0.45 0.02

hn Observer + size (linear) 3 5.13 0.45 0.02
hn Observer 2 6.22 0.45 0.02
hn Observer + species 3 7.34 0.45 0.02
hn Observer + visibility 3 7.92 0.45 0.02
hr Size (factor) 3 32.50 0.55 0.03
hr Species 3 33.87 0.57 0.03
hr Size (linear) 3 33.99 0.56 0.03
hr Intercept 2 34.22 0.56 0.03
hr (Cosine) Intercept 2 34.22 0.56 0.03
hn 
(Cosine) Intercept 

2
34.97 0.54 0.06

hr Visibility 3 36.19 0.56 0.03
hn Size (factor) 2 35.69 0.47 0.02
hn Size (linear) 2 36.80 0.47 0.02
hn Species 2 36.94 0.47 0.02
hn Intercept 1 37.23 0.47 0.02
hn Visibility 2 39.19 0.47 0.02
hn Ice structure 3 41.08 0.47 0.02
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Supplement 9

Visual line transect survey density surface models (DSMs) and model diagnostics

Table S3. Density surface models fitted to visual line transect survey observations of 
crabeater seals collected in the Weddell Sea, Antarctica, in January and February 2014. All 
combinations of “uncorrelated” (Spearman |r| < |0.7|) covariates were fitted as models.
Abundance (푁) was predicted to a prediction grid (65,625 km2) that did not require univariate 
or combinatorial extrapolation and that had at least 10 % (%N ≥ 10 %) reference data nearby.

Response 
distri-
bution1 Model smooth terms2 AIC REML

Deviance 
explained 
(%) 푵

푵 (95% 
CI)

Crabeater seals

tw
(p=1.18)

s(depth)
s(slope)
s(distance to shelf break)
s(distance to coast)
s(time with ice ≥85%) 1240.9 624.2 44.87 72,323

60,682 –
86,196

tw
(p=1.19)

s(depth)
s(slope)
s(distance to shelf break)
s(distance to coast)
s(ice concentration) 1249.6 623.3 42.30 79,032    

66,021 –
94,607

tw
(p=1.20)

s(depth)
s(slope)
s(distance to shelf break)
s(distance to coast)
s(ice concentration) 1250.5 626.6 41.86 78,786    

65,750 –
94,407

1. Response distribution: tw = Tweedie. The same set of models were fitted with a negative 
binomial response distribution, but these models had higher AIC values and poorer model 
diagnostics. 
2. Model smooth terms: ice concentration = sea ice concentration, time with ice ≥85% = the 
fraction of time the ocean is covered by sea ice of concentration 85 % or higher (“multiyear 
sea ice cover”), depth = depth, distance to shelf break = distance to continental shelf break, 
slope = bottom slope, distance to ice = distance to sea ice edge, distance to coast = distance to 
nearest coast.
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Table S4. Density surface models fitted to visual line transect survey observations of Weddell 
seals collected in the Weddell Sea, Antarctica, in January and February 2014. All 
combinations of “uncorrelated” (Spearman |r| < |0.7|) covariates were fitted as models.
Abundance (푁) was predicted to a prediction grid (65,625 km2) that did not require univariate 
or combinatorial extrapolation and that had at least 10 % (%N ≥ 10 %) reference data nearby.

Response 
distri-
bution1 Model smooth terms2 AIC REML

Deviance 
explained 
(%) 푵

푵 (95% 
CI)

Weddell seals

tw
(p=1.12)

s(depth)
s(slope)
s(distance to shelf break)
s(distance to coast)
s(time with ice ≥85%) 727.6 368.0 18.70 29,538

23,143 -
37,701

tw
(p=1.12)

s(depth)
s(slope)
s(distance to shelf break)
s(distance to coast)
s(ice concentration) 731.0 368.1 18.04 31,346

23,593 -
41,646

tw
(p=1.15)

s(depth)
s(slope)
s(distance to shelf break)
s(distance to coast)
s(ice concentration) 746.2 373.7 11.81 30,087

23,483 -
38,549

1. Response distribution: tw = Tweedie. The same set of models were fitted with a negative 
binomial response distribution, but these models had higher AIC values and poorer model 
diagnostics. 
2. Model smooth terms: ice concentration = sea ice concentration, time with ice ≥85% = the 
fraction of time the ocean is covered by sea ice of concentration 85 % or higher (“multiyear 
sea ice cover”), depth = depth, distance to shelf break = distance to continental shelf break, 
slope = bottom slope, distance to ice = distance to sea ice edge, distance to coast = distance to 
nearest coast.
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Figure S16. Normal Q–Q plot, randomised quantile residuals versus linear predictor plot, and 
correlogram for the crabeater seal density surface model with the lowest AIC (Table S8.1). 
The correlogram showed weak autocorrelation (r = 0.17 at a lag of 1 segment) in the model 
residuals. 
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Figure S17. Normal Q–Q plot, randomised quantile residuals versus linear predictor plot, and 
correlogram for the Weddell seal density surface model with the lowest AIC (Table S8.1). 
The correlogram showed weak autocorrelation (r = 0.07 at a lag of 1 segment) in the model 
residuals. 
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Supplement 10

Figure S18. Change in model predicted pack ice seal abundance with different levels of 
availability 

Figure S18. Our analysis assumed that 70 % of pack ice seals were available for detection 
during both the digital and visual surveys (availability = 0.7) (see also Supplement 2). To 
evaluate the sensitivity of model outputs to this haulout factor our final DSMs were refitted 
using availability parameters that varied from 0.5 up to 0.9. These figures show the change in 
predicted abundance (with 95 % confidence intervals) with changes in availability. 
Horizontal dotted lines indicate the upper and lower limit of the 95 % confidence interval of 
predicted abundance when availability equals 0.7. The mean abundance estimates for 60 % or 
80 % availability was estimated within this 95 % confidence interval.      
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Supplement 11

Figure S19. Model predicted pack ice seal density plotted against relative abundance of prey 
species sampled in ecosystem surveys

Figure S19. Density of pack ice seals (predicted by density surface models) plotted against relative 
abundance (on the log scale) of pack ice seal prey species (first column: notothen fish Pleuragramma 
antarctica and Trematomus spp.; second column: krill E. superba and E. crystallorophias) sampled in 
the southern Weddell Sea during January and February 2014. Seal densities were extracted from the 
prediction grid with %N ≥ 0 % (see main text for regressions limited to extractions from the 
prediction grid with %N > 10 %). Linear regressions between predicted seal densities and measures of 
prey abundance are indicated (shaded areas are 95 % confidence intervals).
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Supplement 12
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