

Figure S1. Conceptual diagram of short- and long-term experiments. R= replicate. Created with BioRender.

Figure S2. Oxygen concentration over time in short-term experiments as a function of temperature. Means and standard deviations of 5 replicates are shown. Vertical lines indicate the time intervals used for the calculation of the respiration rates in Fig. 2.

Time interval	Factor levels	Test	Respiration rates	Significant
(h)				differences
0–2	Freezing	One-way ANOVA	F = 1.086	
	Acetic acid		df = 2,10	
	Anoxia		p = 0.383	
2-18	Freezing	One-way ANOVA,	F = 261.469	Between all
	Acetic acid	Holm-Sidak post-hoc test	df = 2,10	treatments
	Anoxia		p < 0.001	
18–24	Freezing	One-way ANOVA	F = 3.848	
	Acetic acid		df = 2,10	
	Anoxia		p = 0.067	
24–48	Freezing	One-way ANOVA	F = 0.461	
	Acetic acid		df = 2,10	
	Anoxia		p = 0.646	

Table S1. Statistics of the effect of the three killing procedures on rates of total microbial respiration per time interval.

Table S2. Statistics of the effect of the temperature on rates of total microbial respiration per time interval.

Time	Factor	Test	Respiration	Significant
interval (h)	levels		rates	differences
0-3.5	20°C			
	16°C	Kruskal-Wallis one-way ANOVA on	H = 16.983	
	12°C	ranks, Dunn's post-hoc test	df = 4	
	8°C		p = 0.002	
	4°C			
3.5–18	20°C			
	16°C	Kruskal-Wallis one-way ANOVA on	H = 17.865	20°C vs 4°C
	12°C	ranks, Dunn's post-hoc test	df = 4	20°C vs 8°C
	8°C		p = 0.001	16°C vs 4°C
	4°C			
18-50	20°C			
	16°C	Kruskal-Wallis one-way ANOVA on	H = 16.527	20°C vs 4°C
	12°C	ranks, Dunn's post-hoc test	df = 4	12°C vs 4°C
	8°C		p = 0.002	
	4°C			
50-115.5	20°C			
	16°C	Kruskal-Wallis one-way ANOVA on	H = 14.211	20°C vs 12°C
	12°C	ranks, Dunn's <i>post-hoc</i> test	df = 3	20°C vs 4°C
	8°C		p = 0.003	
	4°C			
115.5-165.5	20°C			
	16°C	Kruskal-Wallis one-way ANOVA on	H = 3.272	
	12°C	ranks	df = 3	
	8°C		p = 0.352	
	4°C			

Factor	Response variable	Test	Statistics	Significant
levels				differences
20°C	Microbial abundance	One-way ANOVA	F = 1.876	
16°C			df = 4	
12°C			p = 0.136	
8°C				
4°C				
20°C	Total cumulative carbon	Kruskal-Wallis One Way	H = 22.452	20°C vs 12°C
12°C	loss	ANOVA on Ranks, Dunn's	df = 2	20°C vs 4°C
4°C		<i>post-hoc</i> test	p < 0.001	
20°C	Carcass-associated	Kruskal-Wallis One Way	H = 17.559	20°C vs 4°C
12°C	cumulative carbon loss	ANOVA on Ranks, Dunn's	df = 2	12°C vs 4°C
4°C		<i>post-hoc</i> test	p < 0.001	

Table S3. Statistics of the effect of the temperature on the abundance of free-living bacteria and the overall average of total and carcass-associated cumulative carbon loss.

Table S4. Statistics of the differences in total versus carcass-associated cumulative carbon loss at 3 different temperatures (20, 12, and 4°C).

Temperature	Factor levels	Test	Statistics
(°C)			
20	Total cumulative carbon loss	Mann-Whitney rank sum test	T = 190.0
	Carcass-associated cumulative carbon loss		p < 0.001
12	Total cumulative carbon loss Carcass-associated cumulative carbon loss	Mann-Whitney rank sum test	T = 110.0 p < 0.001
4	Total cumulative carbon loss Carcass-associated cumulative carbon loss	Mann-Whitney rank sum test	T = 86.0 p = 0.002