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Supplement 2. List of models tested for each month

Model 
number

Model formula

1 logMI , ~ 훾 × 푆푃푐,푡 + 훽0
2 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푠푠푡
3 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푒푘푒
4 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푚푒푎푛_푠푠푡_푔푟푎푑
5 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푠푠푡 + 훽2푒푘푒
6 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푠푠푡 + 훽2푚푒푎푛_푠푠푡_푔푟푎푑
7 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푒푘푒 + 훽2푚푒푎푛_푠푠푡_푔푟푎푑
8 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푠푠푡 + 훽2푒푘푒 + 훽3푚푒푎푛_푠푠푡_푔푟푎푑
9 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푠푠푡

10 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푒푘푒
11 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푚푒푎푛_푠푠푡_푔푟푎푑
12 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푠푠푡 + 훽2,푡푒푘푒
13 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푠푠푡 + 훽2,푡푚푒푎푛_푠푠푡_푔푟푎푑
14 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푒푘푒 + 훽2,푡푚푒푎푛_푠푠푡_푔푟푎푑
15 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푠푠푡 + 훽2,푡푒푘푒 + 훽3,푡푚푒푎푛_푠푠푡_푔푟푎푑
16 logMI , ~ 훾 × 푆푃푠,푡 + 훽0 + η푐
17 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푠푠푡 + η푐
18 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푒푘푒 + η푐
19 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푚푒푎푛_푠푠푡_푔푟푎푑 + η푐
20 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푠푠푡 + 훽2푒푘푒 + η푐
21 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푠푠푡 + 훽2푚푒푎푛_푠푠푡_푔푟푎푑 + η푐
22 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푒푘푒 + 훽2푚푒푎푛_푠푠푡_푔푟푎푑 + η푐
23 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1푠푠푡 + 훽2푒푘푒 + 훽3푚푒푎푛_푠푠푡_푔푟푎푑 + η푐
24 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푠푠푡 + η푐
25 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푒푘푒 + η푐
26 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푚푒푎푛_푠푠푡_푔푟푎푑 + η푐
27 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푠푠푡 + 훽2,푡푒푘푒 + η푐
28 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푠푠푡 + 훽2,푡푚푒푎푛_푠푠푡_푔푟푎푑 + η푐
29 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푒푘푒 + 훽2,푡푚푒푎푛_푠푠푡_푔푟푎푑 + η푐
30 logMI , ~ 훾 × 푆푃푐,푡 + 훽0,푡 + 훽1,푡푠푠푡 + 훽2,푡푒푘푒 + 훽3,푡푚푒푎푛_푠푠푡_푔푟푎푑 + η푐
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Supplement 3: Variance partitioning

This is an example of how the variance partitioning computation, for the model of January. It 
was identically applied to the next monthly models and corresponding data frames, from 
February to December.

Compute the covariance matrix of all model components

First, we calculate the covariance matrix of all random effects: residuals, gaussian random 
field, year varying intercept and coefficient of covariates. There are three covariates (sst, eke 
and mean_sst_grad) so that there is in total 6 random effects.

sigma2 <- 1 / inla.hyperpar.sample(1e5, 
mod, 
intern = FALSE, 
improve.marginals = TRUE
)

### diagonal matrix with standard deviation
D <- diag(sqrt(apply(sigma2, 2, median)))

### correlation matrix
R <- cor(sigma2)

### write covariance matrix as D R D with D diagonal matrix and R correlati
on matrix
sigma2 <- D %*% R %*% D

inla.hyperpar.sample produce samples from the approximated joint posterior for the 
hyperparameters of our model mod. We chose to use median and not mean values because 
of asymmetric posteriors. Finally, sigma2 was the covariance matrix of all hyperparameters 
of the model. Covariances between pairs of hyperparameters can be visualized through the 
following correlation matrix:

https://doi.org/10.3354/meps13894


Supplement to Gilbert et al. (2021) – Mar Ecol Prog Ser 679: 195–212 – https://doi.org/10.3354/meps13894

3

It shows that covariances were all negative, and that the strongest covariance was between 
the residuals and the spatial field.

Formula (11) from Johnson et al. (2014)

From this covariance matrix, we can compute all variance components. For any random 
effect 푙, the mean random effect variance 휎 is:

휎 = 푇푟(푍 푍 )/푛
Where 푛 the number of observations, 푍 is the design matrix for all random effects and 푍′ the 
transpose of 푍. 푍 contains 푛 rows and one column per random effect.

We mobilized this formula to compute the variance taken into account by each random 
effect, adapting the design matrix 푍.

First, to compute the total mean variance of the model, we defined 푍 with all random 
effects’ components:

# Design matrix
n <- nrow(subset(data, year != 2019)) 
Z <- cbind(rep(1, n), # residual

rep(1, n), # yearly intercept
subset(data, year != 2019)$sst,
subset(data, year != 2019)$eke,
subset(data, year != 2019)$mean_sst_grad,
rep(1, n) # spatial

)
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Where data is the dataset corresponding to January. 2019 was excluded as no mortality 
data was given for the out-of-sample cross validation, thus it wasn’t used to infer these 
random effects. Then we computed the total variance based on formula (11):

omega <- Z %*% sigma2 %*% t(Z) # computationally demanding part, can be dec
omposed
# formula (11) of Johnson et al. (2014)
sigma2_tot <- sum(diag(omega)) / n
# remove objects
rm(omega, Z) 

Note that, for the computation of sigma2_tot, all covariance terms are included by the 
mean of the covariance matrix and the complete design matrix.

Then, this was used to compute the two observation-level mean variance components, 
i.e. residuals and spatial (gaussian random field).

# residual variance: variance not accounted for
residual_var <- sigma2[1, 1] / sigma2_tot

# spatial variance: variance accounted for by the gaussian random field
spatial_var <- sigma2[6, 6] / sigma2_tot

Finally, for yearly random slopes, there is another level of variation: year. This imply a 
dependence between the variance taken into account by each covariate’s effect and 
observations, i.e. values taken by covariates in a given cell and a given year. There are also 
between these random effects covariance terms that needs to be taken into account by the 
mean of the design matrix. We computed the mean variance taken into account by these 4 
year-level random effects:

# Design matrix 
Z <- cbind(rep(0, n), # residual

rep(1, n), # yearly intercept
subset(data, year != 2019)$sst,
subset(data, year != 2019)$eke,
subset(data, year != 2019)$mean_sst_grad,
rep(0, n) # spatial 

)
omega <- Z %*% sigma2 %*% t(Z)
# formula (11) of Johnson et al. (2014)
sigma2_year <- sum(diag(omega)) / n
# remove objects
rm(omega, Z)

# Total variance accounted for by year-level random effects
year_var <- sigma2_year / sigma2_tot

residual_var, spatial_var and year_var were the three input values (computed for 
the 12 monthly models) used for Fig.6 of the article, shown below.
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Note that, if covariance terms were included in the computation of sigma2_tot and 
sigma2_year (with the design matrix), there were not included for the computation of 
each covariate’s contribution, nor for spatial_var and residual_var. Consequently, for 
some months, residual_var + spatial_var + year_var and intercept_var + 
sst_var + eke_var + mean_sst_grad_var can be superior to one. It is especially 
noteworthy for the former, for instance in June or September. This is due to a strong 
negative covariance between spatial and residual terms (see the correlation matrix of 
sigma2 above).
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