
Constraining multi-variate controls on Diatom
growth and physiology
In these experiments, four environmental variables have been manipulated: Temperature, CO2,
Light and Fe. These are our independent variables. Each independent variable has two states,
yielding a total of experimental conditions.

In each experimental condition, six dependent variables have been measured: Cell Size,
Chlorophyll A, C/N ratio, FvFm, Sigma (Chlorophyll antenna size) and Growth Rate.

We seek to determine whether there are relationships between our independent and dependent
variables.

The small number of replicates in the study render the use of common frequentist statistical
approaches (e.g. ANOVA) innappropriate. Instead, we adopt a 'Model Selection' approach
similar to that of Boyd et al (2016) to identify patterns in the data.

Boyd et al (2016) explore the relative importance of independent variables in their data by
comparing five arbitrary models which include or exclude independent variables. The relative
skill of these models to predict patterns in their data is used as a measure of the importance of
each independent variable in their analysis.

We have modified this approach such that instead of evaluating five arbitrary models, we
compare the skill of all possible linear models to explain the data. We calculate the relative
importance of parameters based on all this model ensemble, weighted by the skill of the model.
With four independent variables, this yields 112 candidate models, which encompass all
permutations of linear and interactive terms.

Model Selection

In the most general case, a multivariate relationship may be approximated by a first order
polynomial:

Where and are independent variables, is a model parameter, and each additive term in
the equation is termed a covariate. Given this form, we evalutae the skill of all possible
combinations and permutations of model covariates against each of our dependent variables.

A model with high skill is one which explains the most variance in the dependent variable with
the fewest covariates - i.e. minimising over-fitting.

Metrics such as and to gauge the goodness-of-fit of a model, but neglect the number of
cofactors included in the model so do not allow us to discern model is skill.

Information Criteria, such as the Aikake Information Criterion (AIC) or Bayesian Information
Criterion (BIC) take the goodness-of-fit, the number of covariates, and sample size (BIC only)
into consideration to give a measure of the quality of a model. These information criteria are

24 = 16

f(x, y) = a11xy + a10x + a01y + a00

x y a

R2 χ2

https://www.nature.com/articles/nclimate2811
lars
Textfeld
Supplement to Andrew et al. (2022) – Mar Ecol Prog Ser 682:51–64 – https://doi.org/10.3354/meps13923

https://doi.org/10.3354/meps13923

useful, but are ultimately approximations of more difficult-to-calculate metrics from information
theory ('information loss' and 'Bayes factor' in the cases of AIC and BIC, respectively).

In our evaluation, we employ a method to directly calculate the Bayes Factor of a model
compared to a null-model () based on the model , the number of covariates (= degress
of freedom), and sample size (Rouder & Morey, 2013).

The Bayes Factor (Kass & Raftery, 1995) is defined as:

That is, the probablity () of the data () given your hypothesis () relative to the probability
of the data given a null hypothesis. In other words, if , the observed data are 5 times
more probable if is correct, rather than .

A convenient feature of Bayes Factors is that the relative probablity of the data given any two
models may be calculated from the Bayes Factors comparing each of them to the same null
model, i.e.:

Because the method of Rouder and Morey (2013) calculates the bayes factor of your model
compared to the same null model (), this means that the relative probabilities of all models
may be calculated.

Following this, we calculate the probability of all models relative to the 'best' model (that with
highest skill). We then use these Bayes factors as weights when calculating an ensemble 'best
fit' prediction, and in assessing the relative importance of independent variables.

Normalisation

Before analysis, we normalise all data such that it has a mean of zero and a standard deviation
of one. This allows interpretation of the relative importance of best-fit model parameters.

y = c R2

B01 =
p(D|H1)

p(D|H0)

p D H1

B01 = 5

H1 H0

B21 =
B20

B10

y = c

In [2]:
import brutefit as bf # this is a module I wrote that's available here: http

from tqdm import tqdm_notebook as tqdm

import pandas as pd

import numpy as np

idx = pd.IndexSlice

import matplotlib.pyplot as plt

%matplotlib inline

In [3]:
dat = pd.read_excel('multi_species_model.xlsx', header=[0,1], index_col=0, en

In [4]:
brutes = {}

i = 0

for species in tqdm(['P. antarctica', 'C. flexuosus']):

 X = dat.loc[species, idx['controlled', ['temperature','CO2','light','Fe']

 brutes[species] = {}

https://doi.org/10.1080/00273171.2012.734737
http://www.doi.org/10.1080/01621459.1995.10476572

'Best' Model

Below we show the measured data compared to the prediction of the 'best' (highest Bayes
factor) model. This demonstrates that a linear model is able to explain patterns in the data.

 for yvar in tqdm(['Cell size', 'Chla', 'CN', 'FvFm', 'Sigma', 'Growth'],

 y = dat.loc[species, (yvar, 'mean')].values.reshape(-1, 1)

 w = 1 / dat.loc[species, (yvar, 'std')]**2

 brute = bf.Brute(X, y, w, max_interaction_order=1, include_bias=False

 brute.evaluate_polynomials()

 brute.predict()

 brutes[species][yvar] = brute

In [5]:
fig, axs = plt.subplots(2, 3, figsize=[8, 5.2])

axf = axs.flatten()

xvars = ['temperature','CO2','light','Fe']

for species, mods in brutes.items():

 i = 0

 for yvar, brute in mods.items():

 axf[i].scatter(brute.y_orig, brute.pred_all[0],

 label=species)

 axf[i].set_xlabel('Measured {}'.format(yvar))

 axf[i].set_ylabel('Predicted {}'.format(yvar))

 axf[i].set_aspect(1)

 i += 1

for ax in axf:

 lim = (min(ax.get_xlim()[0], ax.get_ylim()[0]),

 max(ax.get_xlim()[1], ax.get_ylim()[1]))

 ax.set_xlim(lim)

 ax.set_ylim(lim)

 ax.plot(lim, lim, zorder=-1, c=(0,0,0,0.4), ls='dashed')

axf[0].legend()

fig.tight_layout()

fig.savefig('meas_vs_model.pdf')

However, as there is no a-priori reason to assume that patterns in the data follow a particular
functional form, it does not follow to base inferences solely on this single 'best' model. Given the
uncertainty in functional form linking independent and dependent variables, a more realistic
picture of the relationships in our dataset can be gained from including considering all possible
linear models.

Ensemble Prediction from all models.

To accomplish this, we calculated the predicted values of all possible models, and calculate our
'best fit' values from the weighted average of all models using the Bayes Factors as weights.
This identifies relationships within the data without prescribing a functional form to the
relationship.

In [6]:
fig, axs = plt.subplots(2, 3, figsize=[8, 5.2])

xvars = ['temperature','CO2','light','Fe']

allfits = {}

means = {}

stds = {}

for c, species in zip(['C0', 'C1'], ['P. antarctica', 'C. flexuosus']):

 for ax, yvar in zip(axs.flat, ['Cell size', 'Chla', 'CN', 'FvFm', 'Sigma'

 brute = brutes[species][yvar]

 brute.plot_obs_vs_pred(ax=ax)

 r2 = bf.stats.calc_R2(brute.y_orig[:,0], brute.pred_means)

 if c == 'C0':

 ax.text(0.05, 0.95, f'R^2: {r2:.2f}', color=c, ha='left', va='t

 else:

 ax.text(0.95, 0.05, f'R^2: {r2:.2f}', color=c, ha='right', va='

 ax.set_title(yvar)

for ax in axs.flat:

 lim = (min(ax.get_xlim()[0], ax.get_ylim()[0]),

 max(ax.get_xlim()[1], ax.get_ylim()[1]))

Effect Sizes based on all Models

Extending this weighted-ensemble approach, we may estimate the relative importance of each
model parameter using a kernel-density estimator where the contribution of each each model to
the overall distribution is weighted by its Bayes Factor. This provides an estimate of the relative
importance of each covariate in the model.

Interpreting distributions - what is 'significant'?

In this analysis we purposefully steer clear of frequentist 'p' values and 'significance'
terminology, as the small sample sizes limit the applicability of standard statistical methods, and
render the interpretation of 'p' values to be, at best, precarious. Rather, we appraise the relative
importance of our dependent variables graphically, in the plot below.

 ax.set_xlim(lim)

 ax.set_ylim(lim)

 ax.plot(lim, lim, zorder=-1, c=(0,0,0,0.4), ls='dashed')

fig.tight_layout()

fig.savefig('meas_vs_model_ensemble.pdf')

In [8]:
obs_v_pred = pd.DataFrame(columns=pd.MultiIndex.from_product([[''],['Controll

for species in ['P. antarctica', 'C. flexuosus']:

 for variable in ['Cell size', 'Chla', 'CN', 'FvFm', 'Sigma', 'Growth']:

 brute = brutes[species][variable]

 obs_v_pred.loc[:, (species, 'Measured', variable)] = brute.y_orig

 obs_v_pred.loc[:, (species, 'Measured', variable + '_std')] = (1 / br

 obs_v_pred.loc[:, (species, 'Predicted', variable)] = brute.pred_mean

 obs_v_pred.loc[:, (species, 'Predicted', variable + '_std')] = brute.

obs_v_pred.sort_index(1, inplace=True)

obs_v_pred.to_csv('export_ObsVPred.csv')

In this plot, each distribution represents the importance of a model covariate derived from our
ensemble of 112 models, weighted by their Bayes Factors. Parameter values from models with
low Bayes Factors, and hence low 'skill' are down-weighted in these distributions.

If a distribution is sharp, the value of this covariate was relatively consistent across all high-skill
models - i.e. its value is relatively constant, despite the inclusion or exclusion of other covariates
in the model. If the distribution is broader, importance of this covariate in high-skill varies with
the addition or removal of other covariates.

The further the centre of the distribution lies from the zero line, the more stronger the
relationship between that covariate and the dependent variable. Values above zero indicating a
positive relationship and vice versa. If the distribution overlaps with zero, this may be interpreted
as having no (or little) effect on the dependent variable - or being 'non significant' in frequentist
terminology.

In summary, these plots give an estimate of the relative, individual influence of each model
covariate on each dependent variable. Distributions further from the zero line indicate a stronger
effect, and we can be more confident in them. I a distribution does not overlap with zero, it can
be confidently described as a 'real' influence on the dependent variable. Distributions closer to
zero are weaker, and if they overlap with the zero line they cannot be conclusively described as
having an influence on the dependent variable.

In [9]:
c = {

 'Temp': '#e31a1c',

 'Light': '#ff7f00',

 'CO2': '#1f78b4',

 'Fe': '#33a02c',

 'Temp CO2': '#6a3d9a',

 'Temp Light': '#fdbf6f',

 'Temp Fe': '#cab2d6',

 'CO2 Light': '#a6cee3',

 'CO2 Fe': '#b2df8a',

 'Light Fe': '#fb9a99'

}

labels = 'ABCDEFGHIJKL'

for s, sub in brutes.items():

 for v, brute in sub.items():

 brute.set_covariate_colors(c)

In [10]:
for zero_overlap in [1, 0.1, 0.05]:

 fig, axs = plt.subplots(2, 6, sharex=True, sharey=False, figsize=[17, 4])

 mn = -1

 mx = 1

 rn = mx - mn

 pad = 0.05

 vals = np.linspace(mn - rn * pad, mx + rn * pad, 500)

 bin_width = 0.5

 i = 0

 ymax = []

 for row, species in zip(axs, ['C. flexuosus', 'P. antarctica']):

 for ax, variable in zip(row, ['Growth', 'FvFm', 'Sigma', 'Chla', 'Cel

 brute = brutes[species][variable]

 brute.plot_param_dists(vals, bw_method=bin_width, ax=ax, filter_z

 if ax.is_first_row():

 ax.set_title(variable)

 ax.set_xlabel(None)

 else:

 ax.set_xlabel('Covariate Influence')

 if ax.is_first_col():

 ax.set_ylabel('{}\nProbability Density'.format(species))

 else:

 ax.set_ylabel(None)

 ax.text(0.03, 0.97, labels[i], weight='bold', size=11, va='top',

 i += 1

 ymax.append(ax.get_ylim()[1])

 for ax in axs.flat:

 # ax.set_ylim(0, max(ymax))

 ax.set_xlim(vals[0], vals[-1])

 fig.tight_layout()

 fig.subplots_adjust(right=0.9)

 axs[0,-1].legend(bbox_to_anchor=(1, 1))

 fig.savefig(f'parameter_contributions_{zero_overlap:.2f}.pdf')

In [11]:
plot_pdfs = []

for species in ['P. antarctica', 'C. flexuosus']:

 for variable in ['Cell size', 'Chla', 'CN', 'FvFm', 'Sigma', 'Growth']:

 brute = brutes[species][variable]

 pdfs = bf.stats.calc_param_distributions(brute, bw_method=bin_width,

Modern vs. Future Ocean

 pdfs.columns = pd.MultiIndex.from_tuples([(species, variable, brute.v

 plot_pdfs.append(pdfs)

plot_pdfs = pd.concat(plot_pdfs, 1)

plot_pdfs.to_csv('export_pdfs.csv')

In [12]:
def condition_plot(sub, brute, idx_future, idx_now, ind, ax):

 ax.errorbar(idx_future[ind], sub.loc[ind, (yvar, 'mean')], sub.loc[ind, (

 lw=0, elinewidth=1, marker='o', color=c)

 ax.plot(idx_future[ind], brute.pred_means[ind], color=c)

 ax.fill_between(idx_future[ind],

 brute.pred_means[ind] + brute.pred_stds[ind],

 brute.pred_means[ind] - brute.pred_stds[ind],

 alpha=0.2, color=c)

yvars = ['Growth', 'FvFm', 'Sigma', 'Chla', 'Cell size', 'CN']

labels = 'ABCDEFGHIJKL'

colors = ['darkgrey', 'C1', 'C0', 'C2']

panel size

pw = 2.5

ph = 2

fig, axs = plt.subplots(dat.index.unique().size, len(yvars), figsize=[len(yva

i = 0

for row, s in zip(axs, dat.index.unique()):

 sub = dat.loc[s]

 idx_now = (sub.controlled.temperature == 3) & (sub.controlled.CO2 == 350)

 idx_future = (sub.controlled.temperature == 5) & (sub.controlled.CO2 == 1

 idx_relevant = idx_now | idx_future

 idx_Fe_lo = sub.controlled.Fe == 4

 idx_Fe_hi = ~idx_Fe_lo

 idx_light_lo = sub.controlled.light == 25

 idx_light_hi = ~idx_light_lo

 for ax, yvar in zip(row, yvars):

 brute = brutes[s][yvar]

 # low light, low iron

 c = colors[0]

 ind = idx_Fe_lo & idx_light_lo & idx_relevant

 condition_plot(sub, brute, idx_future, idx_now, ind, ax)

 # high light, low iron

 c = colors[1]

 ind = idx_Fe_lo & idx_light_hi & idx_relevant

 condition_plot(sub, brute, idx_future, idx_now, ind, ax)

 # low light, high iron

 c = colors[2]

 ind = idx_Fe_hi & idx_light_lo & idx_relevant

 condition_plot(sub, brute, idx_future, idx_now, ind, ax)

 # high light, high iron

 c = colors[3]

 ind = idx_Fe_hi & idx_light_hi & idx_relevant

 condition_plot(sub, brute, idx_future, idx_now, ind, ax)

 if ax.is_first_row():

 ax.set_title(yvar)

 else:

 ax.set_xticks([0, 1])

 ax.set_xticklabels(['Now', 'Future'])

 if ax.is_first_col():

 ax.set_ylabel(s)

 ax.text(0.03, 0.97, labels[i], weight='bold', size=11, va='top', ha='

 i += 1

fig.tight_layout()

legend

right = .85

fig.subplots_adjust(right=right)

upper = axs[0, -1].get_position()

lower = axs[1, -1].get_position()

legax = fig.add_axes([right + 0.01, lower.y0, 1 - right - 0.01 - 0.05, upper.

conditions = ['- Light, - Fe', '+ Light, - Fe', '- Light, + Fe', '+ Light, +

for var, c in zip(conditions, colors):

 legax.errorbar([],[],[],lw=0, elinewidth=1, marker='o', color=c, label=va

legax.plot([],[],c=(.5,.5,.5), label='Model')

legax.fill_between([],[],[],color=(.5,.5,.5), alpha=0.2, label='Model $1\sigm

legax.legend(loc='upper left')

legax.axis('off')

fig.savefig('Now_vs_Future.pdf')

