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Figure	 S1.	 Predicted	 versus	measured	 parameters	 for	P.	 antarctica	 (blue)	 and	C.	 flexuosus	 (orange)	
using	the	'best'	(highest	Bayes	factor)	model.	Model	versus	observations:	Before	discussing	the	results	
for	 each	 treatment,	 we	 first	 will	 present	 the	 results	 for	 the	 fitting	 of	 the	 data	 with	 the	 multivariate	
model.	We	 did	 this	 to	 gain	 confidence	 that	 the	 trends	 within	 the	 data	 are	 robust	 and	 to	 signify	 the	
influence	individual	and	combined	treatments	have	on	cell	growth	and	physiology.	When	the	measured	
data	 are	 compared	 to	 the	 prediction	 of	 the	 'best'	 (highest	 Bayes	 factor)	 model,	 a	 strong	 linear	
relationship	was	obtained	for	all	measured	parameters.	This	demonstrates	that	a	linear	model	(Equation	
1)	is	able	to	explain	patterns	in	the	data.	
	
Model	Selection:	 In	 the	most	general	case,	a	multivariate	 relationship	may	be	approximated	by	a	 first	
order	polynomial:	

𝑓 𝑥, 𝑦 = 𝑎!!𝑥𝑦 + 𝑎!"𝑥 + 𝑎!"𝑦 +  𝑎!!			 	 	 	 (1)	

Where	 x	 and	 y	 are	 independent	 variables,	 a	 is	 a	 model	 parameter,	 and	 each	 additive	 term	 in	 the	
equation	 is	termed	a	covariate.	Given	this	 form,	we	evaluate	the	skill	of	all	possible	combinations	and	
permutations	of	model	covariates	against	each	of	our	dependent	variables.	A	model	with	high	skill	is	one	
which	explains	the	most	variance	in	the	dependent	variable	with	the	fewest	covariates	-	i.e.	minimising	
over-fitting.	

Metrics	 such	 as	R2	 and	χ2	 are	 generally	 used	 to	 gauge	 the	 goodness-of-fit	 of	 a	model,	 but	 these	 two	
metrics	neglect	the	number	of	cofactors	included	in	the	model	so	do	not	allow	us	to	discern	the	skill	of	
the	model.	

Information	 Criteria,	 such	 as	 the	 Aikake	 Information	 Criterion	 (AIC)	 or	 Bayesian	 Information	 Criterion	
(BIC)	take	the	goodness-of-fit,	the	number	of	covariates,	and	sample	size	(BIC	only)	into	consideration	to	
give	 a	 measure	 of	 the	 quality	 of	 a	 model.	 These	 information	 criteria	 are	 useful	 but	 are	 ultimately	
approximations	 of	more	 difficult-to-calculate	metrics	 from	 information	 theory	 ('information	 loss'	 and	
'Bayes	factor'	in	the	cases	of	AIC	and	BIC,	respectively).	

In	our	evaluation,	we	employ	a	method	to	directly	calculate	the	Bayes	Factor	of	a	model	compared	to	a	
null-model	(y=c)	based	on	the	model	R2,	the	number	of	covariates	(=	degrees	of	freedom),	and	sample	
size	(Rouder	&	Morey,	2013).		

The	Bayes	Factor	(Kass	&	Raftery,	1995)	was	defined	as:	

𝐵!" =
! !|!!
! !|!!

	 	 	 	 	 	 	 	 	 (2)	

Where	 the	probability	 (p)	 of	 the	data	 (D)	 given	 your	hypothesis	 (H1)	 relative	 to	 the	probability	of	 the	
data	given	a	null	hypothesis.	In	other	words,	if	B01	=	5,	the	observed	data	are	5	times	more	probable	if	H1	
is	correct,	rather	than	H0.	Using	the	Bayes	Factors	the	relative	probability	of	the	data	given	for	any	two	
models	may	also	be	calculated	and	compared	to	the	same	null	model,	i.e.:		

𝐵!" =
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!!"

	 	 	 	 	 	 	 	 	 (3)	
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Using	this	approach,	we	calculate	the	probability	of	all	models	relative	to	the	'best'	model	(that	with	the	
highest	 skill).	 We	 then	 use	 these	 Bayes	 factors	 as	 weights	 when	 calculating	 an	 ensemble	 'best	 fit'	
prediction,	and	in	assessing	the	relative	importance	of	independent	variables.	In	this	figure,	the	hashed	
line	represents	the	1:1	relationship	between	measured	and	predicted	values.	
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Figure	 S2.	 Predicted	 versus	measured	 parameters	 for	P.	 antarctica	 (orange)	 and	C.	 flexuosus	 (blue)	
using	 all	 the	model	 runs.	While	 the	 'best'	 (highest	 Bayes	 factor)	model	 fits	 the	measured	 data	well,	
there	 is	 no	a	priori	 reason	 to	 assume	 that	patterns	 in	 the	data	 follow	a	particular	 functional	 form.	 In	
other	 words,	 it	 is	 not	 reasonable	 to	 assume	 trends	 solely	 on	 this	 single	 'best'	 model.	 Given	 the	
uncertainty	in	functional	form	linking	independent	and	dependent	variables,	a	more	realistic	picture	of	
the	relationships	in	our	dataset	can	be	gained	from	considering	all	possible	linear	models.	To	accomplish	
this,	we	calculated	the	predicted	values	of	all	possible	models,	and	calculate	our	 'best	 fit'	values	 from	
the	weighted	 average	 of	 all	models	 using	 the	 Bayes	 Factors	 as	weights.	 This	 approach	 allowed	 us	 to	
identify	 relationships	 within	 the	 data	 without	 prescribing	 a	 functional	 form	 to	 the	 relationship.	 We	
extended	 this	 weighted-ensemble	 approach	 to	 estimate	 the	 relative	 importance	 of	 each	 model	
parameter	 using	 a	 kernel-density	 estimator	 where	 the	 contribution	 of	 each	 model	 to	 the	 overall	
distribution	is	weighted	by	its	Bayes	Factor.	This	provided	us	with	an	estimate	of	the	relative	importance	
of	each	covariate.	In	this	figure,	the	hashed	line	represents	the	1:1	relationship	between	measured	and	
predicted	values.	
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Figure	 S3.	 Probability	 density	 plots	 of	 the	 size	 of	 covariate	 effects	 on	 measured	 physiological	
parameters	for	C.	flexuosus	(A-F)	and	P.	antarctica	(G-L),	as	determined	by	fitting	a	multivariate	linear	
model	 to	 all	 data	 simultaneously	 (p=1).	The	distribution	 of	 effect	 sizes	 is	 calculated	 from	 the	 size	 of	
each	parameter	in	all	112	models	weighted	by	the	skill	of	each	model.	Sharp	peaks	represent	consistent	
effect	size	across	all	high-skill	models,	whereas	broad	distributions	have	less	confidence	across	models.	
Probability	distributions	centered	above	zero	indicate	a	positive	influence	on	cell	physiology.  
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