Supplement S8

Comparing model results with existing surveys

June 7, 2023

Introduction

Here we provide a comparison of the abundance estimates from our simulation models a few years after the oil spill with independent abundance estimates for the different taxonomic units.
There were surveys from 2003, 2004 and 2009, which we averaged and consider to be representative of pre-spill abundance, and then there are surveys from 2017 and 2018, which again we averaged and assume to represent 8 years post oil spill abundance.

We then compare the reduction in population size between these survey-based empirical estimates vs the reduction observed in our simulations.

Details about the code used to produce the plots below is available in the corresponding ".Rmd" file that generated this pdf.

The survey data

The survey data are taken out of Garrison et al. (2020, 2021), and were compiled in a .xlsx document also provided under the "InputFiles" folder. The file name is "GOMMAPS_ABUNDANCE_ESTIMATES.xlsx"
Some surveys are for a pair of years, and we first recode these, for visual display purposes, as a single year value, corresponding to the the mid point between those successive years.

The original data file did not include the 4 letter code we considered in general for each taxonomic unit on the remaining documents. Therefore, we first define the rows corresponding to each taxonomic unit via their corresponding 4 letter code.

Comparisons by taxonomic unit

Next, we produce, for each species, a plot including the abundance point estimates given the considered surveys. Further, we compute for each species the change in population size from before to after 2010, based on surveys. We refer to these as observed, noting the name is somewhat misleading since they are not really observed but estimated from empirical data, but that will contract to what we will refer to as expected, based on our simulations. We compare, on a taxonomic by taxonomic unit basis, the observed reduction with the expected reduction.

To compute the observed population change

Beaked whales

We can calculate the reduction from before to after, generating means from before and after
Therefore, given the surveys, there was actually an increase in the abundance of beaked whales in the area of 1.151 , with a 95% confidence interval of $(0.454,2.43)$. This means there is large uncertainty over what was the evolution of the population, which could have been anywhere from a severe decrease to a large increase.
On the other hand, based on our simulations, we obtain the following reduction factor: 0.967 , with a 95% confidence interval of $(0.938,0.988)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below. Values above the horizontal line actually correspond to population increases.

Period

While the reduction factor based on the empirical data from the surveys and that from the simulations are not inconsistent, the truth is the precision associated with these, most especially the large variance in the survey data, would not allow us to find anything but astronomical differences.

Pygmy killer whale Feresa attenuata

We can calculate the reduction from before to after, generating means from before and after
Therefore, given the surveys, there was actually an increase in the abundance of beaked whales in the area of 1.151 , with a 95% confidence interval of $(0.454,2.432)$. This means there is large uncertainty over what was the evolution of the population, which could have been anywhere from a severe decrease to a large increase.

On the other hand, based on our simulations, we obtain the following reduction factor: 0.961 , with a 95% confidence interval of $(0.936,0.982)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below.

While the reduction factor based on the empirical data from the surveys and that from the simulations are not inconsistent, the truth is the precision associated with these, most especially the large variance in the survey data, would not allow us to find anything but astronomical differences.

Risso's dolphin Grampus griseus

We can calculate the reduction from before to after, generating means from before and after
Based on the surveys there seems to have been a decrease on the abundance of Rissos's dolphin of $0.372,95 \%$ confidence interval of $(0.106,0.949)$.
On the other hand, based on our simulations, we obtain the following reduction factor: 0.946 , with a 95% confidence interval of $(0.908,0.976)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below.

The reduction factors based on the empirical data from the surveys and that from the simulations are not inconsistent.

Short-finned pilot whale Globicephala macrorhynchus

We can calculate the reduction from before to after, generating means from before and after
Based on the surveys there seems to have been a decrease on the abundance of pilot whales of $0.592,95 \%$ confidence interval of $(0.152,1.582)$.
On the other hand, based on our simulations, we obtain the following reduction factor: 0.967 , with a 95% confidence interval of ($0.94,0.986$). A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below. Values above the horizontal line actually correspond to population increases.

While the reduction factor based on the empirical data from the surveys and that from the simulations are not inconsistent, the truth is the precision associated with these, most especially the large variance in the survey data, would not allow us to find anything but astronomical differences.

Kogia spp.

We can calculate the reduction from before to after, generating means from before and after
Based on the surveys there seems to have been an increase on the abundance of Kogia whales of 1.796, 95% confidence interval of $(0.64,4.03)$.
On the other hand, based on our simulations, we obtain the following reduction factor: 0.954 , with a 95% confidence interval of $(0.92,0.98)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below.

The reduction factors based on the empirical data from the surveys and that from the simulations are not inconsistent.

Melon-headed whale Peponocephala electra

We can calculate the reduction from before to after, generating means from before and after
Based on the surveys there seems to have been a decrease on the abundance of Kogia whales of $0.462,95 \%$ confidence interval of ($0.078,1.546$).
On the other hand, based on our simulations, we obtain the following reduction factor: 0.962 , with a 95% confidence interval of $(0.937,0.983)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below.

The reduction factors based on the empirical data from the surveys and that from the simulations are not inconsistent.

Sperm whale Physeter macrocephalus

We can calculate the reduction from before to after, generating means from before and after
Based on the surveys there seems to have been a decrease on the abundance of Kogia whales of $0.6,95 \%$ confidence interval of $(0.298,1.076)$.
On the other hand, based on our simulations, we obtain the following reduction factor: 0.94 , with a 95% confidence interval of $(0.902,0.974)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below.

The reduction factors based on the empirical data from the surveys and that from the simulations are not inconsistent.

Pantropical spotted dolphin Stenella attenuata

We can calculate the reduction from before to after, generating means from before and after
Based on the surveys there seems to have been a decrease on the abundance of Kogia whales of $0.569,95 \%$ confidence interval of $(0.28,1.053)$.
On the other hand, based on our simulations, we obtain the following reduction factor: 0.969 , with a 95% confidence interval of $(0.947,0.987)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below.

The reduction factors based on the empirical data from the surveys and that from the simulations are not inconsistent.

Rough-toothed dolphin Steno bredanensis

We do not present estimates of empirical reduction since there are no non-zero estimates for the post oil-spill period.

Clymene dolphin Stenella clymene

We can calculate the reduction from before to after, generating means from before and after
Based on the surveys there seems to have been a decrease on the abundance of Kogia whales of $0.071,95 \%$ confidence interval of $(0.007,0.286)$.

On the other hand, based on our simulations, we obtain the following reduction factor: 0.984 , with a 95% confidence interval of $(0.97,0.994)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below.

For the Clymene dolphin, the reduction factors estimated from the simulations seems to be considerably less severe than that observed empirically from the survey data.

Striped dolphin Stenella coeruleoalba

We can calculate the reduction from before to after, generating means from before and after
Based on the surveys there seems to have been a decrease on the abundance of Kogia whales of $0.312,95 \%$ confidence interval of $(0.078,0.849)$.
On the other hand, based on our simulations, we obtain the following reduction factor: 0.945 , with a 95% confidence interval of $(0.899,0.978)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below.

As for the Clymene dolphin, also for the striped dolphin the reduction factors estimated from the simulations seems to be considerably less severe than that observed empirically from the survey data.

Atlantic spotted dolphin Stenellafrontalis

For these animals, the surveys in 2003, 2004, 2009, 2017 and 2018 were vessel surveys targeting oceanic animals, while in 2011-2012 and 2017-2018 there were aerial surveys targeting shelf animals. We ignored surveys before 2009, when the species was not detected. We assume that the surveys from the 2009 for oceanic summed summed with the 2011-2012 for shelf combined provide a best guess for the pre-spill population estimate, while the surveys for 2017 and 2018 for oceanic summed to those for $2017-2018$ for shelf provide an estimate of the post spill population.
Given that, we can calculate the reduction from before to after, generating means from before and after
Based on the surveys there seems to have been a decrease on the abundance of Kogia whales of $1.876,95 \%$ confidence interval of $(0.679,4.166)$.

On the other hand, based on our simulations, we obtain the following reduction factor: 0.988 , with a 95% confidence interval of $(0.979,0.995)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below.

For the Atlantic spotted dolphin the wide variability in the survey reduction factor, with a point estimate even suggesting a population increase might have occurred, means the simulated reduction factor is not at odds with the empirical data.

Spinner dolphin Stenella longirostris

We can calculate the reduction from before to after, generating means from before and after
Based on the surveys there seems to have been a decrease on the abundance of spinner dolphin of $0.205,95 \%$ confidence interval of $(0.051,0.562)$.
On the other hand, based on our simulations, we obtain the following reduction factor: 0.917 , with a 95% confidence interval of $(0.827,0.972)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below.

As for both the Clymene dolphin and the striped dolphin, for the spinner dolphin the reduction factors estimated from the simulations seem to be considerably less severe than that observed empirically from the survey data.

Bottlenose dolphin Tursiops truncatus (oceanic)

We can calculate the reduction from before to after, generating means from before and after
Based on the surveys there seems to have been a decrease on the abundance of Kogia whales of $0.604,95 \%$ confidence interval of $(0.236,1.275)$.

On the other hand, based on our simulations, we obtain the following reduction factor: 0.948 , with a 95% confidence interval of $(0.913,0.977)$. A comparison of these mean values and corresponding 95% confidence intervals is shown in the figure below.

The reduction factors based on the empirical data from the surveys and that from the simulations are not inconsistent.

Bottlenose dolphin Tursiops truncatus (shelf)

No direct comparison is possible since there were no estimates prior to the oil-spill.

References

- Garrison, Lance P., Ortega-Ortiz, Joel,Rappucci, Gina (2020) Abundance of Marine Mammals in Waters of the U.S. Gulf of Mexico During the Summers of 2017 and 2018. National Marine Fisheries Service.;Southeast Fisheries Science Center. Southeast Fisheries Science Center reference document PRBD 2020-07. https://doi.org/10.25923/3px6-9v48
- Garrison, Lance P., Ortega-Ortiz, Joel, Rappucci, Gina (2021) Abundance of Coastal and Continental Shelf Stocks of Common Bottlenose and Atlantic Spotted Dolphins in the Northern Gulf of Mexico: 2017-2018, National Marine Fisheries Service.;Southeast Fisheries Science Center. Southeast Fisheries Science Center reference document PRBD 2021-01. https://doi.org/10.25923/vk95-t881

