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SUPPLEMENT 1 

Section S1: Table of variables and parameters 

Table S1. Summary of variables and parameters. Note that some variables and parameters are 

presented in the equations given in additional supplement sections. 

Symbol Name units Type Eq. 

A Ratio ºC constant 5 

Dmin Minimum biological time Clock time constant 4 

δ Fluctuation shape constant None constant S5 

E1 Minimum tolerance range ºC constant S9 

E2 Maximum tolerance range ºC constant S9 

ε1 Constant ºC constant 6 

ε2 Constant Clock time-1 constant 6 

fcsm Maximum signal level None constant S6 

fr Fraction of phenotypic change ºC-1 Variable 8 

frm Maximum rate of change ºC-1 constant 8 

fsp1 Phenotype state 1 None constant 9 

fsp2 Phenotype state 2 None constant 9 

FC→S Function: cue to signal None variable 7 

FS→P Function: signal to phenotype None variable 9 

km Rate constant ºC-1 constant S3 

kμ Rate constant ºC-1 Clock time-1 constant 3 

kr Half saturation temperature ºC constant 8 

ks Signal shape constant ºC-1 constant 7 

kt Rate constant Clock time-1 constant S3 

kτ Rate constant ºC Clock time constant 4 

Lmax Minimum biological time-1 Clock time-1 variable 5 

m Magnitude in extrinsic frame ºC variable 1 

M Matrix of partial derivatives  several variable 2 

M0   Optimal temperature ºC constant 6 

Mcrit Critical temperature ºC constant 6 

µ Magnitude in intrinsic frame none variable 1 

R,r Invariant Response Mass variable 1 

S Stenothermic function ºC-1 variable 3 

S0  Minimum sensitivity ºC-1 constant 3 

t Clock time scale Clock time variable 1 

t* Extrinsic observation time Clock time variable 1 

τ Intrinsic time scale None variable 1 

τ* Biological observation time None variable 1 

x Time Clock time variable 7 

xu Threshold time Clock time constant S7 

y Temperature  ºC variable 7 

yu Threshold temperature ºC constant 7 

z Sensitivity ºC constant 6 
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Section S2: Additional properties of space of fluctuations and the reference frame 

The mt-projection shows following properties: (1) All fluctuations are projected the upper half 

plane, i.e., as points located in the part of the plane where t is positive (fluctuations with 

negative period do not exist). For simplicity, I will assume that m>0 because experiments 

usually focus on either high or low temperature with respect to a thermal optimum, for which 

m can be conveniently rescaled to be positive. Hence, the properties mentioned below do no 

change if m is also considered to be negative. However, (2) m cannot be zero because there is 

no fluctuation of any type that can be represented exactly as m=0. Hence, the vertical line at 

m=0 constitutes a so-called “open boundary”: points describing fluctuations can be located 

infinitely near the boundary but not on it.  (3) There is no fluctuation characterised by t=0; 

therefore, the horizontal line at t=0 is also an open boundary, which can be approximated by 

very small fluctuations. (4) Treatments of constant temperature can be viewed as a fluctuation 

where the period tends to infinity. Therefore, a given constant condition (characterised by a 

value of m), is projected in the plane as a point belonging to a so-called “line at infinity” (Fig. 

5a), i.e. an horizonal line that can be never reached. (5) The values of m and t of the extrinsic 

frame define a rectangular grid, as a map with cartesian coordinates (Fig. 5a). 

The μτ -projection has the following properties: (1) All fluctuations of m>0 are projected 

within triangle characterised by two open boundaries: the first open boundary is at τopen= 

μ/(kτkμ) (see below). Additional open boundaries are given by the lines at τ=0 and μ =0 because 

they correspond to cases where t=0 or m =0. In practice, the space occupied by the fluctuations 

manipulated in a real experiment will be less than the octant and will depend on the maximum 

time scale and amplitude manipulated in the experiment.  Hence, there is a practical limit (black 

curve in Fig. 5c) which will approach the open boundary as the time scale of the fluctuation 

increases.  Such area is expanded with large values of S0 and Dmin or small values of kμ and kτ. 

(3) When S0 = Dmin = 0, the 2D space (Fig. 5c) collapses into a 1D space, because equations 3 

and 4 result in that μ and τ are multiples from each other.  

Calculation of τopen: First, I obtain the upper (closed) boundary (black points in Fig. 5c), with 

equation:  

𝜏𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜇𝑡𝑚𝑎𝑥/[𝜇𝐷𝑚𝑖𝑛 + 𝑘𝜏(𝑆0 + 𝑘𝜇𝑡𝑚𝑎𝑥)] (Eq. S2) 

where tmax is the maximum value of t used in a real-world experiment. This is not a theoretical 

limit; it will be set by constraints in the maximum amount of time allowed in a given 

experiment. Thus, tmax does not have any particular meaning from the theoretical point of view. 

Equation S2 is obtained as follows. The close boundary is calculated as a function of the 

intrinsic coordinates from: 

µ = 𝑚(𝑆0 + 𝑘𝜇𝑡)  

noting that the equation for τ can be re-written as  

𝜏 (𝑚𝐷𝑚𝑖𝑛+ 𝑘𝜏) = 𝑡𝑚 

By expanding the equation of µ and by substitution I obtain: 

µ = 𝑚𝑆0 + 𝑘𝜇𝑡𝑚 = 𝑚𝑆0 + 𝑘𝜇𝜏 (𝑚𝐷𝑚𝑖𝑛+ 𝑘𝜏)  

https://doi.org/10.3354/meps14414


Supplement to Gimenez (2023) – Mar Ecol Prog Ser 721:17–38 – https://doi.org/10.3354/meps14414 

 

 
 

3 

In addition, the equation of τ can be further rewritten as: 

𝜏 𝑘𝜏 = 𝑚(𝑡 − 𝜏𝐷𝑚𝑖𝑛) => 𝑚 = 𝜏 𝑘𝜏/(𝑡 − 𝜏𝐷𝑚𝑖𝑛) 

By plugging m into the equation of µ we obtain: 

µ =
𝑆0𝜏 𝑘𝜏

(𝑡 − 𝜏𝐷𝑚𝑖𝑛)
+ 𝑘𝜇𝜏 [

𝐷𝑚𝑖𝑛𝜏 𝑘𝜏

(𝑡 − 𝜏𝐷𝑚𝑖𝑛)
+ 𝑘𝜏] 

 µ =
𝑆0𝜏 𝑘𝜏

(𝑡−𝜏𝐷𝑚𝑖𝑛)
+ 𝑘𝜇𝜏 [

𝐷𝑚𝑖𝑛𝜏 𝑘𝜏

(𝑡−𝜏𝐷𝑚𝑖𝑛)
+

 𝑘𝜏(𝑡−𝜏𝐷𝑚𝑖𝑛)

(𝑡−𝜏𝐷𝑚𝑖𝑛)
] 

µ =
𝑆0𝜏 𝑘𝜏

(𝑡 − 𝜏𝐷𝑚𝑖𝑛)
+ 𝑘𝜇𝜏 [

𝐷𝑚𝑖𝑛𝜏 𝑘𝜏 +  𝑘𝜏𝑡 −  𝑘𝜏𝜏𝐷𝑚𝑖𝑛

(𝑡 − 𝜏𝐷𝑚𝑖𝑛)
] 

µ =
𝑆0𝜏 𝑘𝜏

(𝑡 − 𝜏𝐷𝑚𝑖𝑛)
+ 𝑘𝜇𝜏 [

 𝑘𝜏𝑡

𝑡 − 𝜏𝐷𝑚𝑖𝑛
] 

µ(𝑡 − 𝜏𝐷𝑚𝑖𝑛) = 𝑆0𝜏 𝑘𝜏 + 𝑘𝜇𝜏  𝑘𝜏𝑡  ═>  µ𝑡 − µ𝜏𝐷𝑚𝑖𝑛 = 𝜏(𝑆0 𝑘𝜏 + 𝑘𝜇   𝑘𝜏𝑡) 

µ𝑡 = 𝜏(𝑆0 𝑘𝜏 + 𝑘𝜇   𝑘𝜏𝑡 + µ 𝐷𝑚𝑖𝑛) 

𝜏 = 𝜇𝑡/[𝜇𝐷𝑚𝑖𝑛 + 𝑘𝜏(𝑆0 + 𝑘𝜇𝑡)]   

The limit is obtained by noting that its inverse can be written as: 

1/𝜏𝑐𝑙𝑜𝑠𝑒𝑑 = (
𝐷𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
) + (

𝑘𝜏𝑆0

𝜇 𝑡𝑚𝑎𝑥
) + (

𝑘𝜏𝑘𝜇

𝜇
)  

lim
𝑡𝑚𝑎𝑥→∞

1/𝜏𝑐𝑙𝑜𝑠𝑒𝑑 = (
𝑘𝜏𝑘𝜇

𝜇
)  

Therefore, we obtain an open boundary τopen= μ/(kτkμ). 

Above such boundary, fluctuations would be characterised by negative amplitude (m<0) and 

period (t<0) as measured in clock time. Fluctuations of positive t but negative amplitude are 

projected to different quadrants of Figure 5b.  
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Section S3: Case 1, modelling body mass as the response R 

I consider a simple response: 

𝑅 = 𝑒𝑓(𝑡,𝑚)∙𝑡∗
(Eq. S3a) 

𝑓(𝑚, 𝑡) = −(𝑘𝑚𝑚 + 𝑘𝑡𝑡) (Eq. S3b) 

The function f(m,t) is a rate of decrease driven by the magnitude and time scale of a thermal 

fluctuation (km and kt are constants). Because we observe the response at a single time (t*= 1) 

the function reduces to an exponential decay function of t and m, with the sensitivity to each 

fluctuation component described by the respective constants (Fig. 6a). In the biological frame, 

the functions of equations 3 and 4 distort the shape of the response (Fig. 6b): in the example, 

the response function varies mostly with the biological time scale of the fluctuation (τ) but very 

little with the biologically normalised magnitude (μ).  

One can have an analytical expression of r by setting t and m as a function of μ and τ. For m, I 

first write μ and τ as follows: 

µ = 𝑚(𝑆0 + 𝑘𝜇𝑡) , 𝜏 (𝑚𝐷𝑚𝑖𝑛+ 𝑘𝜏) = 𝑡𝑚 

Then, I expand the equation of µ and substitute tm to obtain m: 

µ = 𝑚𝑆0 + 𝑘𝜇𝑡𝑚 , µ = 𝑚𝑆0 + 𝑘𝜇𝜏 (𝑚𝐷𝑚𝑖𝑛+ 𝑘𝜏)  

𝑚 = (µ − 𝑘𝜇𝑘𝜏𝜏 )/(𝑆0 + 𝑘𝜇𝐷𝑚𝑖𝑛𝜏)  

For t, I substitute m in the equation for µ 

µ = (µ − 𝑘𝜇𝑘𝜏𝜏 )(𝑆0 + 𝑘𝜇𝑡)/(𝑆0 + 𝑘𝜇𝐷𝑚𝑖𝑛𝜏) 

The terms are manipulated to obtain t. 

µ
(𝑆0+𝑘𝜇𝐷𝑚𝑖𝑛𝜏)

(µ−𝑘𝜇𝑘𝜏𝜏 )
= (𝑆0 + 𝑘𝜇𝑡)  ═>   µ

(𝑆0+𝑘𝜇𝐷𝑚𝑖𝑛𝜏)

(µ−𝑘𝜇𝑘𝜏𝜏 )
− 𝑆0 = 𝑘𝜇𝑡 ═>   

µ(𝑆0+𝑘𝜇𝐷𝑚𝑖𝑛𝜏)−𝑆0(µ−𝑘𝜇𝑘𝜏𝜏 )

(µ−𝑘𝜇𝑘𝜏𝜏 )
= 𝑘𝜇𝑡 

═>   
µ𝑆0+µ𝑘𝜇𝐷𝑚𝑖𝑛𝜏−𝑆0µ+𝑆0𝑘𝜇𝑘𝜏𝜏 

(µ−𝑘𝜇𝑘𝜏𝜏 )
= 𝑘𝜇𝑡═>   

µ𝑘𝜇𝐷𝑚𝑖𝑛𝜏+𝑆0𝑘𝜇𝑘𝜏𝜏 

(µ−𝑘𝜇𝑘𝜏𝜏 )
= 𝑘𝜇𝑡 

𝑡 = 𝜏
(µ𝐷𝑚𝑖𝑛+𝑆0𝑘𝜏) 

(µ−𝑘𝜇𝑘𝜏𝜏 )
 

I then express the response in terms of μ and τ and set t*=1: 

𝑟(𝜏, 𝜇) = 𝑒𝑥𝑝 {−𝑘𝑚 (
𝜇−𝑎𝜏

𝑆0+𝑏𝜏
) − 𝑘𝑡𝜏 (

𝜇+𝑎𝐷𝑚𝑖𝑛

𝜇−𝑎𝜏
)}(Eq. S4), 

where a= kμkτ, b=kμDmin, c=S0kτ 
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Section S4: Similarities between cases 1 and 2 

Cases 1 and 2 share a number of common features, which should also be shared with other 

cases as long as the functions L and S are respectively defined as inverse of D and E. First, they 

leave empty spaces reflecting the existence of areas where fluctuations are not allowed to exist 

as point vectors. In the above two cases, the mapping functions contain a hyperbolic 

relationship. This is better appreciated by expressing the tolerances (E1,E2, for cases 1 and 2 

respectively) and developmental times (D1,D2) as:  

𝐸1 = 𝑐1/(1 + 𝑐2𝑡) , 𝐸2 = log (𝑐3/𝑡𝑧) 

𝐷1 = 𝑐4 + 𝑐5/𝑚 , 𝐷2 = exp(𝑐6 + 𝑐7/𝑚 ) 

where ci (i=1,…7) are constants. Notice that by applying the transformations, E’2=exp(E2) and 

D’2=log(D2) we recover inverse power functions (the hyperbolic function for E’2 would be a 

special case with z=1); one could then express the intrinsic frame in terms of the coordinate 

system with μ’= m/E’2 and τ’=t/ D’2 . 

In addition, in Case 1, as E(t) tends to zero, μ tends to infinity, but τ acquires values depending 

on m; hence, the horizonal line represented by t=exp(Emax/z) is projected into the intrinsic frame 

as a vertical line at infinity, which in practice lies outside the area where the response is 

quantified. 
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Section S5: Modelling plasticity 

Briefly, the mapping of the cue to signal is modelled as a sigmodal function (see e.g. Nijhout 

& Reed 1916) incorporating threshold phenomena in response to the value of the cue (e.g. 

Fowler 2008, Condon et al 2010). The second function maps the signal to the phenotype 

through a linear conditional function where the rate of phenotypic change increases with 

temperature. The third function maps the phenotype to the tolerance using a linear equation. 

Modelling the alternative of discrete forms of plasticity (documented in Buoro et al. 2009, Reid 

& Acker 2022) would require a sigmoidal or step function at this stage.  

An important point in this model is that one must consider processes occurring during the 

fluctuation. Therefore, in addition to the consideration of the fluctuations as magnitudes and 

time scales, I will define an additional time variable (=x). Here, notice that time is introduced 

as an additional variable, which is not the same as the time scale of the fluctuation (t) nor the 

observation time (t*); both t and t* are specific values of x which ranges from the initiation of 

the experiment to the moment when observations are made.  

I modelled the fluctuation as a square wave (Figs. S1, S2), so that temperature increases faster 

towards the maximum value, given by the magnitude (=m). In consequence, the differences in 

the rate of temperature increase among waves of different time scales is minimized as 

compared to using a sine or cosine function.  The fluctuation is modelled as a solitary wave 

using the equation: 

𝑦(𝑥) =
𝑚

𝑎𝑟𝑐𝑎𝑛(𝛿)
∙ arctan [δ ∙ sin (

2𝜋𝑥

2𝑡
)](Eq. S5) 

 The parameter δ determines how flat the wave will become and t is the time scale of the 

fluctuation, here defined as half the wave period (=2t). 

 

Figure S1. A subset of the modelled fluctuations, combining three magnitudes (m= 5, 15 and 

15 °C) and time scales (5,15 and 25 days). All fluctuations were modelled from equation S5, 

with δ=4.  
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From cue to signal: I model the first step as a sigmoid function mapping the environmental cue 

(e.g. temperature) to an internal signal that initiates the formation of the phenotype. Such 

threshold is related to mechanisms accounting for high “false alarm costs” of responding to the 

cue (Getty 1996, Laubach et al. 2018), e.g. when changing from winter to summer phenotype 

at the wrong time compromises survival. The first function, Fc→s, maps the cue to the signal 

as:  

Fc→s =
𝑓𝑐𝑠𝑚

1+𝑒𝑘𝑠(𝑦𝑢−𝑦) (Eq. S6) 

In equation S6, y=y(x) is the value of the environmental cue (i.e. temperature), which varies 

through time and yu is the threshold value of the environmental cue triggering a response, i.e. 

the mechanism driving the formation of the phenotype. The constant fcsm is the maximum value 

of the response and kS is a rate constant indicating how sharp is the triggering of the response. 

In the example (Fig. 8), the environmental cue is the same as the environmental fluctuation 

(=temperature). 

 

Figure S2. A subset of the modelled signal for combinations of three magnitudes (5,15 and 15 

°C) and time scales (5,15 and 25 days). The signal is triggered when the cue (=temperature) 

reaches a threshold (yu=10°C) and the function uses Ks=1. Note that no signal is shown in the 

case of fluctuations of magnitude =5°C because such fluctuations are under the threshold.  

 

The second function Fs→p maps the signal to the phenotype, and indirectly determines the 

dynamics of the conversion of the phenotype over time from its current form (fsp1) to the new 

form (fsp2). I use the following conditions: 

(1) At times x< xu, when the temperature is lower than the threshold temperature (yu) 

triggering the signal: 

𝐹𝑆→𝑃 = 𝑓𝑠𝑝1 (S7a) 
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(2) Beyond the above defined thresholds, the phenotype changes until the time when 

𝐹𝑆→𝑃 = 𝑓𝑠𝑝2. Within those limits we have: 

𝐹𝑆→𝑃 = 𝑓𝑠𝑝1 + ∑ 𝑓𝑟(𝑥)𝑥 (S7b) 

(3) At a given time FS→P reaches a maximum fsp2 after which the phenotype remains at 

that constant value (implying that the formation of the phenotype is driven by a 

regulatory process). At subsequent times: 

𝐹𝑆→𝑃 = 𝑓𝑠𝑝2 (S7c) 

In equation (S7b), Fs→p, increases through time a sum of fractions, fr that depend on 

temperature:  

𝑓𝑟 =
𝑓𝑟𝑚∙𝑦

𝑘𝑟+𝑦
 (S8) 

where frm is the asymptotic maximum and kr is a half saturation constant. Those fractions are 

rates of increase and the inverse give the time scale of the formation of the phenotype. Equation 

(S7) captures the realistic situation where the rate of phenotypic change increases with 

temperature but reaches a maximum frm reflecting a physiological constraint.  

The third function maps the phenotype to the tolerance. For simplicity, I use a linear function 

such that tolerance range from its previous value (E1) up to a maximum value (E2).  

𝐸 = 𝐸1 + (𝐸2 − 𝐸1) ∙ 𝐹𝑆→𝑃 (S9) 

 

Figure S3. Summary of responses with example for m = 20 and t = 20. Upper panel: changes 

in temperature and resulted change in the tolerance range. Lower panel: Intermediate steps: 

changes in the signal (following the cue of temperature) triggering the change in the phenotype. 

The signal follows eq. (S5) with maximum fscm=1, kS=1 and threshold temperature yU=10°C. 

The phenotype was modelled from Eq. (S6) and Eq. (7.) In Eq. (6), the minimum and maximum 

values are fsp1=0, fsp2=1; xU is the time which FC→S reaches the threshold value FU= 1/6, which 
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induces the change in the phenotype. In Eq. (7), driving the temperature dependence of the rate 

of phenotypic change, the maximum rate is frm=0.05 and the half saturation constant k=5. The 

tolerance was modelled from Eq. (8) with lower and upper thresholds E1=20 and E2=40. 

Equations (S6) to (S9) are used to calculate the tolerance range and µ for each combinations of 

t and m (example in Fig S4). 

 

Figure S4. Heat map of µ based on equations and parameters given in the legend of Fig S3 

There are three important points to notice. First, equations (S6-S9) model an irreversible 

mechanism because the state of the phenotype will not be updated by the cue after the 

fluctuation (hence, it does not return to the initial state). I did not model reversible plasticity 

because of the practical reason that the observations, made here after the fluctuation took place 

will not record the change in the tolerance range (the effects of the reversible plasticity on 

tolerance must be studied adding observations during the fluctuation). Although the current 

experimental set up does not detect transient phenomena (i.e. occurring during the fluctuation), 

it will detect the consequences on the response (e.g. body size). A possible scenario is that body 

size does not change with the time scale of the fluctuation because of the buffering effect of 

the plasticity. Alternatively, if the (reversible) plastic response cannot be sustained over long 

times (and hence the tolerance range drops while the fluctuation is taking place), then the time 

scale of the fluctuation will affect the response. 

Second, the model used here is valid for a continuous change in the tolerance range. The 

continuous function mapping the phenotype to the tolerance implies that the phenotype is 

functional at any time, although the limitations given by equation (S7) implies that the optimal 

phenotype is lagging behind the thermal change during the fluctuation. Discrete changes should 

be modelled through an equation driving the formation of the phenotype, rather than its change, 

although such equation could have the same form as Eq. (S6). One could then consider a 

sigmoid or step function for Eq. (S8) which describes the functionality of the phenotype. 

 Third, it is important to identify the time lags considered in the above model. (1) The time 

between the moment when the observer judges that the fluctuation starts (=x0) and the moment 

when organism perceives it (=xu), i.e. when the cue is transformed into a signal; in statistical 
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terms, xu is a latent (= unobserved) variable, but its effects are observed in Fig. S4 as a change 

in the values of μ. (2) Because the rate of change in the phenotype follows an asymptotic 

pattern, it will lag behind the thermal change during the fluctuation; although this is not 

detected in the tolerance range (i.e. it is a transient effect) it will have consequences for the 

response. There is a third time lag (not considered here) between the moment when the 

phenotype starts to be formed and the moment when it becomes functional. Such time lag 

would require a different model for the function mapping the phenotype to the tolerance. Time 

lags of this type are likely to occur in plastic responses associated to body morphology in 

crustaceans, as the consequence of their growth through moulting events. In such case, 

structures are usually formed previous to the moult but remain underneath the exoskeleton and 

become functional only after moulting.   
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Section S6: Worked example 

Sections 

6.1 Introduction 

6.2 Preliminary data handling 

6.3 Compute mu and tau 

6.4 The invariant response: body size 

6.5 Statistical analyses 

6.6 Scale transition theory 

 

6.1 Introduction 

6.1.1. Experimental setup 

The example is a simulation of an experiment where individuals of an ectothermic species were 

reared from hatching to metamorphosis (or maturation depending on choice), being exposed to 

thermal fluctuations (i.e. as a wave) of different clock time scale (= t from 10 to 50 days) and 

magnitude (from 1 to 10 thermal units). The experiment follows a gradient design using 

individual rearing (i.e. one individual per glass container. Over the text, I will comment on how 

to do calculations if more than one replicate is used. This experiments represents an example 

for the case of rearing decapod crustacean larvae from hatching to metamorphosis. The 

experiments would use 90 glasses; water change and re-feeding would take place every 1-2 

days depending on the organism (methods in Torres et al. 2021). The experiment would be 

carried out using 10 water baths (or a water table: see Leiva et al. 2022 as example) keeping 

the temperature constant and then moving replicate units from a room, set at the baseline 

temperature to each water bath and returning it to the room after a number of days 

predetermined by time scale of the fluctuation being simulated. 

6.1.2 Equations used in the simulation 

The equations simulating the data and fluctuations can be implemented in an electronic 

spreadsheet or in e.g. R. The fluctuation was modeled as in the example of plasticity (Case 3 

in main text) with time defined as the variable “x”. Temperature, y(x) is modeled as an 

approximation to a solitary square wave, using the function: 

𝑦 = (2𝑚/𝜋) ⋅ 𝑎𝑡𝑎𝑛(𝑠𝑖𝑛(2𝜋𝑥/2𝑡)/𝛿) 

The parameter 𝛿 determines the flatness of the wave; 𝑚 is the magnitude and t is the time scale 

(i.e. half the wave period = 2𝑡). The function 𝑎𝑡𝑎𝑛 is the arc-tangent (= 𝑡𝑎𝑛−1). 

Developmental time, tolerance and body size are modelled using recursive formulas. 

Developmental time is simulated as depending on degree days. Organisms mature on the day 

where the cumulative temperature reaches or surpasses 800∘𝐶 ⋅ 𝑑𝑎𝑦𝑠. The equation for this 

calculations is as follows: 

https://doi.org/10.3354/meps14414


Supplement to Gimenez (2023) – Mar Ecol Prog Ser 721:17–38 – https://doi.org/10.3354/meps14414 

 

 
 

12 

𝜑 = ∑ 𝑦

100

𝑥=1

(𝑥)/800 + 𝜁1 

where 𝜑 is defined as the developmental state variable and 𝜁 is a Gaussian error on mean=0 

and variance=0.001. A small amount of Gaussian noise is added in all biological variables in 

order to simulate error but avoiding to produce highly noisy data. Developmental time (= D) is 

given by 

1 = ∑ 𝑦

𝐷

𝑥=1

(𝑥)/800 + 𝜁1(𝑥) 

The calculation is made through a loop where a 𝜑(𝑥, 𝑡, 𝑚), accumulates the value of 

temperature per day until it reaches 800 C days. In a second step,𝜑(𝑥, 𝑡, 𝑚) is re coded,as 

binary indicating immature (=0) or mature (=1). The re-coding was preceded by a step ensuring 

that the developmental state variable is ever increasing (a condition that was violated after the 

introduction of Gaussian noise). The recording to binary is important because in the 

experiments one can only stage an animal as immature or mature. 

The metric for tolerance is given by a physiological state variable 𝑆(𝑥, 𝑦), and the threshold 

temperature setting the tolerance range is 𝑠 = 0.5. This would represent a case where the metric 

is the proportion of survivors or a physiological variable quantifying the state of the organism 

. The time course of 𝑆(𝑥, 𝑦) is modeled as an exponential decay using the difference equation: 

𝑆(𝑥 + 1) = 𝑆(𝑥) ⋅ 𝑒𝑥𝑝[𝑎 ⋅ [𝑦(𝑥) − 5]] + 𝜁2(𝑥) 

where the exponential term drives the decrease in the physiological state and _{2} is a Gaussian 

error (mean=0, variance=0.001). The exponential term depends on the temperature on the day 

and a constant rate (a=0.001); a is set so as to produce a smooth decrease in 𝑆 along the time 

range of the simulation (100 days), The exponential term is zero at the optimal temperature 

(=5C); hence, 𝑆 remains constant after the fluctuation is experienced. The fluctuation 

components (𝑚 and 𝑡) drive 𝑆 through the effect on 𝑦(𝑥, 𝑡, 𝑚).In this model, there is neither a 

recovery (𝑆 does not increase through time) nor time lag effects (𝑆 at a given time 𝑥 = 𝑥𝑓 does 

not depend on temperatures at any time 𝑥 < 𝑥𝑓). This model will however reflect the history 

of the fluctuation because longer 𝑡 results in lower 𝑆 at any chosen 𝑡∗. 

The invariant response is represented as body size (=R). Body size is modeled as using the von 

Bertalanffy growth function. It is computed from a difference equation using a modification of 

the Ford-Waldford formulation. 

𝑅(𝑥 + 1) = 𝑅𝑖𝑛𝑓 − 𝑒𝑥𝑝(−𝑘) ⋅ [𝑅(𝑥) − 𝑅𝑖𝑛𝑓] + 𝜁3(𝑥) 

where R_{inf} is the asymptotic size, k is the catabolic constant and _{3} is a Gaussian error 

(mean=0 , variance= 0.3). As in a realistic case, R increase over time also after the fluctuation 

is experienced. 

Both 𝑘 and 𝑅𝑖𝑛𝑓 decrease exponentially with temperature, 𝑦(𝑥), according to the functions: 
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𝑘 = 0.02𝑒𝑥𝑝(−0.02𝑦) 

𝑅𝑖𝑛𝑓 = 20𝑒𝑥𝑝(−0.02𝑦) 

In both functions, the constants were chosen so as to produce smooth changes in body size 

along the time range considered. Those functions lead to a decrease in the invariante response 

(𝑅) when the fluctuations are characterized by large 𝑚. 

6.2. Preliminary data handling 

Set working directory if needed 

 setwd("") 

Libraries needed 

library(dplyr) 
library(lattice) 
library(latticeExtra) 
library(plot3D) 

library(plot3Drgl) 

library(mgcv) 

library(nlme) 

library(readr) 

library(gridExtra) 

library(tactile) 

Uploading data: Column names and long names: x= time (in days) mag= magnitude of 

temperature tt= Time scale of thermal fluctuation y = temperature over time = y(x) Phi= binary 

variable: 0=immature; 1= mature. s= binary variable: 0= thermal threshold not reached; 1= 

thermal threshold reached. R= Invariant response (body size).All data should be numeric. 

df <- data.frame(read_csv("workedexample.csv")) 

The following figures show examples of thermal fluctuations and the biological variables 

covering the range of t and m in the example. 

Thermal fluctuations: 

color1<-c("blue","orange","#009E73") 
color2<-c("#CCFFFF","#FFBF00","#CCFFCC") 
mykey=list(text=list(c("t=10","t=25","t=50")), 
           corner = c(0.02, 0.9), 
           points=list(pch=21:23,col=color1,fill=color2)) 

 
xyplot(y~x|factor(mag),type="b", groups=factor(tt),grid=TRUE, 
       key = mykey,pch=c(21,22,23),layout=c(3,1), 
       strip=strip.custom(factor.levels=c("m=1","m=5","m=10")), 
       xlab= "Time variable, x", ylab="Temperature, y", 
       data=df[which(df$mag %in% c(1,5,10) & df$tt %in% c(10,25,50)),]) 
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Figure S5. Time course of selected simulated thermal fluctuations characterized by different 

amplitude (𝑚) and time scale (𝑡). 

 

xyplot(phi~x|factor(mag),type="b", groups=factor(tt),grid=TRUE, 
       key = mykey,pch=c(21,22,23),layout=c(3,1), 
       strip=strip.custom(factor.levels=c("m=1","m=5","m=10")), 
       xlab= "Time variable, x", ylab="Developmental state,", 
       data=df[which(df$mag %in% c(1,5,10) & df$tt %in% c(10,25,50)),]) 

 

 

Figure S6. Time course of developmental state variable (0=immature, 1=mature) for selected 

simulated thermal fluctuations characterized by different amplitude (𝑚) and time scale(𝑡). 
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xyplot(s~x|factor(mag),type="b", groups=factor(tt),grid=TRUE, 
       key=mykey,pch=c(21,22,23),layout=c(3,1), 
       strip=strip.custom(factor.levels=c("m=1","m=5","m=10")), 

       xlab= "Time variable, x", ylab="Physiological state,s", 
       data=df[which(df$mag %in% c(1,5,10) & df$tt %in% c(10,25,50)),]) 

 

 

Figure S7. Time course of physiological state variable used to define the thermal tolerance limit 

(0=no response, 1=critical response) for selected simulated thermal fluctuations characterized 

by different amplitude (𝑚) and time scale(𝑡). 

 

xyplot(R~x|factor(mag),type="b", groups=factor(tt),grid=TRUE, 
       key=mykey,pch=c(21,22,23),layout=c(3,1), 
       strip=strip.custom(factor.levels=c("m=1","m=5","m=10")), 
       xlab= "Time variable, x", ylab="Body size, R", 
       data=df[which(df$mag %in% c(1,5,10) & df$tt %in% c(10,25,50)),]) 
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 Figure S8. Growth in body size under selected simulated thermal fluctuations characterized by 

different amplitude (𝑚) and time scale (𝑡). 

6.3. Compute  𝝉 and 𝝁 

6. 3.1 Steps for 𝜏 

The first step is the calculation of duration of development (DD) for each combination of 

fluctuation time scale (tt) and magnitude (mag). The loop below, extracts the time at which the 

binary variable switches from 0 to 1, for each combination of 𝑚 and 𝑡. Calculations are stored 

in data frame dfDD 

DD<-c1<-c2<-NULL 
for(j in 1:10){ 
  for(k in seq(10,50,5)){ 
dfsub<-df[which(df$mag==j & df$tt==k),] 

for (i in 1:nrow(dfsub)){ 
  datosi<-dfsub[i,] 
  if(datosi$phi<1 & datosi$x<99){next} else {if(datosi$phi<1 & datosi$x==9

9){DDi<-NA 
  DD<-c(DD,DDi) 
  c1<-c(c1,j) 
  c2<-c(c2,k) 
  break}else {DDi<-datosi$x 
  DD<-c(DD,DDi) 
  c1<-c(c1,j) 
  c2<-c(c2,k) 
  break} 

}}}} 

https://doi.org/10.3354/meps14414


Supplement to Gimenez (2023) – Mar Ecol Prog Ser 721:17–38 – https://doi.org/10.3354/meps14414 

 

 
 

17 

dfDD<-data.frame(mag=c1,tt=c2,DD=DD) 
dfDD<-arrange(dfDD,tt,mag) 

For the calculation of 𝜏∗ (and 𝜏), we must note that 𝜏∗ = 1 corresponds to the time (= 𝑥) 

coinciding with the duration of development (𝐷). Any fluctuation time scale must be scaled 

according to that the duration of development. The code below checks that the data are aligned 

properly, then places the 𝐷 values in the original data frame and calculates 𝜏∗ (and 𝜏). 

df$tt2<-rep(dfDD$tt, each=100) 
df$mag2<-rep(dfDD$mag, each=100) 

range(df$mag-df$mag2) 

## [1] 0 0 

range(df$tt-df$tt2) 

## [1] 0 0 

df$DD<-rep(dfDD$DD, each=100) 
df$tau<-df$tt/df$DD 
df$taustar<-df$x/df$DD 

 

6.3.2 Steps for 𝜇 

The point 𝜇 = 1 occurs when the s variable switches from 0 to 1. Following the equation of 𝜇, 

we get 𝜏 = 1 = 𝑚/𝐸(𝑡). Therefore, at that conditions we have that 𝑚 = 𝐸(𝑡). 

In each experiment, the response will switch from 0 to 1 at a given time 𝑥. Hence, points where 

𝜇 = 1 exist at many of the time slices defined by 𝑥 = 𝑡∗. How 𝜇 varies through time depends 

on how the metric to calculate tolerance changes after the fluctuation is experienced. If the 

metric is the the proportion of survivors, tolerance might also decrease also after the fluctuation 

is experienced. Hence, 𝜇 will vary with the observation time 𝑥 = 𝑡∗. In the worked example, 

the metric of tolerance does not change after the fluctuation. 

 

 

 

mus<-tts<-xs<-mags<-mm1s<-NULL 
dfE<-data.frame(x=rep(NA,900),tt=rep(NA,900),E=rep(NA,900)) 
# The double loop selects a time step and a  t-value 
i=1 
for(l in 0:99){ 
for(j in seq(10,50,5)){ 
    dfsub<-df[which(df$x==l & df$tt==j),] 

   
# This loop finds mm1 = m at which tolerance switches to 1 
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  for(k in 1:10){ 
    ss<-dfsub$s[k] 
  if(ss==1){mm1<-dfsub[k,2] 

  break}else{mm1<-NA} 
  } 
dfE$x[i]<-l 
dfE$tt[i]<-j 
dfE$E[i]<-mm1 
i=i+1 
# Calculation : mu=m/mm1 
mu<-dfsub$mag/mm1 
# Storage of data 
mm1s<-c(mm1s,mm1) 
mus<-c(mus,mu) 
tts<-c(tts,dfsub$tt) 

xs<-c(xs,dfsub$x) 
mags<-c(mags,dfsub$mag) 
}} 

# Output of loop  
chequeo<-data.frame(x=as.numeric(xs),tt=tts,mag=mags,mu=mus) 
# Output must be re-ordered according to the data frame df 
chequeo<-arrange(chequeo,tt,mags,x) 

 
df$mu<-chequeo$mu 
rm(mus,mags,tts,xs) 
rm(chequeo) 

 

 

6.4. The invariant response 

6.4.1 The mt-projection: space of existence and extreme fluctuations 

We can now plot the invariant response, 𝜏 and 𝜇. This will help us to identify the space of 

existence and the set of fluctuations categorized as extreme (using 𝜇 = 1 as criterion). In the 

figure, we will mask values of body size outside the space of existence as they would not exist 

in a real case scenario. However, recall that in the example, the body size was still quantified 

after the time of maturation (after 𝜏 = 1). 

 

mag<-seq(1,10,1) 
tt<-seq(10,50,5) 

 
  dftstar<-subset(df, x==70) 
  dfpoly<-dftstar[which(dftstar$mu==1),2:3] 
  xcoord<-c(dfpoly$mag,10,10) 
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  ycoord<-c(dfpoly$tt,50,10) 
sizemat<-matrix(data=dftstar$R, nrow=10, ncol=9) 
mumat<-matrix(data=dftstar$mu, nrow=10, ncol=9) 

taumat<-matrix(data=dftstar$tau, nrow=10, ncol=9) 
taustarmat<-matrix(data=dftstar$taustar, nrow=10, ncol=9) 
image2D(sizemat,mag,tt,colkey = TRUE, resfac = 6, 
          #levels=seq(0.1,3.4,0.2),  
          xlim=c(1,10),ylim=c(10,50),zlim=c(8,14), 
        xlab="Magnitude", ylab="Time scale") 

 
polygon2D(xcoord,ycoord, border ="black",col="white",add=TRUE) 

 
contour2D(mumat,mag,tt,colkey = FALSE,  
          col=c("black","black"), 
          lty=1,lwd=2, 

          levels=c(1), xlab="Magnitude", ylab="Time scale", 
          xlim=c(1,10),ylim=c(10,50), 
          add=TRUE) 

 
contour2D(taumat,mag,tt,colkey = FALSE,  
          col=c("dark blue"),lty=2,lwd=2, 

          levels=c(1), 
          xlab="Magnitude", ylab="Time scale", 
          xlim=c(1,10),ylim=c(10,50), 
          add=TRUE) 
contour2D(taustarmat,mag,tt,colkey = FALSE,  
          col=c("dark blue"),lty=1,lwd=2, 
          levels=c(1), 
          xlab="Magnitude", ylab="Time scale", 

          xlim=c(1,10),ylim=c(10,50), 
          add=TRUE) 
abline(v =5, lty = 2) 
abline(h=30,lty=2) 
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Figure S9. The (mt)-projection of the invariant response at 𝑡∗=70. The black continuous line 

corresponds to 𝜇 = 1, defining the region of existence. The black dashed line delimit the region 

(m<5) where the tolerance becomes independent of the time scale of the fluctuation. The 

horizontal black dashed line indicate the region (t>30) where fluctuations enable maturation. 

The blue line corresponds to tau star=1 and the blue dashed line is 𝜏 = 1. The line of 𝜏∗ = 1 

gives the time of maturation. In the example, the time of maturation was simulated also for 

m𝜇 > 1 in order to show the region the fluctuation magnitude is high enough to elicit a 

response before the organisms reach maturation (𝜏 = 1 line lies in the region where mu>1). 

The line of 𝜏 = 1 gives the set of fluctuations with time scales equal to that of the time of 

maturation. In this case, fluctuations of such length are located in the region of mu >1 showing 

that such type of fluctuations would not be tolerated (within the region defined in the diagram). 

6.4.2 The response at maturation in the mt-projection 

The code below produces the response at 𝜏∗ = 1 as two different scatter plots o. The command 

rgl() will create a separate window and enable to rotate the image and better appreciate the 

pattern. 

dfRtau<-df[which(df$taustar==1 & df$mu<1),c(2,3,7)] 

 
scatter2D(dfRtau$tt,dfRtau$R, pch=20, cex=1.5, 
          xlab="Time scale", ylab="Size at maturation",  
          colvar = as.integer(dfRtau$mag), 
          col=c("dark blue", "green", "orange"), 
          colkey = list(at = c(3, 4, 5), side=4, 
          labels = c("3", "4", "5")), clab = "Magnitude" ) 
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scatter3D(dfRtau$mag,dfRtau$tt,dfRtau$R, phi=0, bty ="g", 
          xlab="Magnitude", ylab="Time scale",  
          zlab="Size at maturation",ticktype="detailed", 

          pch=20, cex=2, 
          colkey=FALSE ) 

 

 

Figure S10. Two representations of the 𝑚𝑡-projection of the invariant response at 𝜏∗=1. 

Because of the sparsity of data I was not able to create a heatmap. A projection as heatmap is 
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shown after model fitting (Figure S19). Note that in the extra-window one can rotate the 

scatterplot. 

6.4.3 The (𝜇, 𝜏)-projection 

The figure that we need to create can be based on a scatter or on an image. In the latter case, 

the best option is to fit a general additive model (gam) and represent the predictions. 

dfmutau<-df[which(df$taustar==1),c(7,11,13)] 

 
# Image based on smoothed data 
g1<-gam(R~te(mu,tau),data=dfmutau) 
summary(g1) 

##  

## Family: gaussian  
## Link function: identity  
##  
## Formula: 
## R ~ te(mu, tau) 
##  
## Parametric coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  9.57716    0.05659   169.3   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Approximate significance of smooth terms: 
##              edf Ref.df     F p-value     
## te(mu,tau) 11.14  13.65 180.6  <2e-16 *** 
## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## R-sq.(adj) =  0.981   Deviance explained = 98.6% 
## GCV = 0.20575  Scale est. = 0.15369   n = 48 

range(dfmutau$tau) 

## [1] 0.1595745 1.2500000 

range(dfmutau$mu) 

## [1] 0.600000 1.666667 

scatter3D(dfmutau$mu,dfmutau$tau,dfmutau$R, phi=0, bty ="g", 
          xlab="mu", ylab="tau", zlab="Size at maturation", 
          pch=20, cex=2, 
          colkey=FALSE ) 
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mu<-seq(min(dfmutau$mu),1,length.out=20) 
tau<-seq(min(dfmutau$tau),max(dfmutau$tau),length.out=20) 
dfmutau2<-data.frame(expand.grid(mu=mu,tau=tau)) 

dfmutau2$R<-predict(g1, newdata=dfmutau2) 
mutaumat<-matrix(dfmutau2$R,nrow=20,ncol=20) # mu varies with row 

 
image2D(mutaumat,mu,tau,colkey = TRUE, resfac = 6, 
          #levels=seq(0.1,3.4,0.2),  
          #xlim=c(0,1), 

        #,ylim=c(10,50), 
        xlab=expression(paste(mu)), ylab=expression(paste(tau))) 

 

 

 

 

Figure S11. Two different representations of the 𝜇𝜏-projection of the invariant response at the 

time of maturation (𝜏∗ = 1). As expected, the invariant response is much less responsive to 𝜇 

than to 𝜏 especially, at low (or high) 𝜏 values, i.e. when the time scale of the fluctuations are 

short (or long) relative to the time of maturation. 
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6.5 Statistical analysis 

The study of the role of different fitting methods is outside the scope of this paper; I refer to 

Zuur et al. (2009) for an overview and to Kreyling et al. (2018) for more details on gradient 

analysis. Briefly, I use backward model selection based on the Akaike Information Criterion 

(AIC). In addition, because the data is modeled with Gaussian errors, I focus on regression and 

do not include here the analysis of residuals; such analysis can be reproduced by the user adding 

appropriate code. The code contains however a check that the fitted and observed values follow 

a linear trend (plot and correlation). 

For the models, I consider three points: (1) Parametric vs non-parametric models. I choose a 

parametric method (nonlinear regression) because SOFiA requires that we obtain equations. 

(2) Mechanistic vs phenomenological model. I opt for a phenomenological description 

assuming that the level of knowledge of the system is not sufficient to develop a mathematical 

theory. (3) Depending on the nature of the invariant response, it may be possible to study (3a) 

its time evolution from the start of the experiment, (3b) only over a few time points or (3c) only 

once (e.g. only a maturation). The choice depends on the cost of making an observation, on 

consequences of disturbing the environmental conditions being manipulated and on whether 

measurements are invasive (e.g. organisms must be killed). Here, I assume that the response 

can be observed two times: at a fixed clock time after all fluctuations are experienced (𝑡∗ =

70𝑑𝑎𝑦𝑠) at the time of maturation (𝜏∗=1). This assumption has also a third reason, which is to 

illustrate how the response change depended on the coordinate used to measure time. 

Statistical models are fitted only to data falling inside the region of existence (including at 

times when 𝜇 = 1, as animals can be still measured at that time). 

6.5.1 Developmental time and 𝜏 

The first step is to find a model for time to maturation. In the code below, the first line selects 

the data, using the time slice of 𝑥 = 𝑡∗ = 70 (the values of DD are repeated over each time 

slice). The subsequent lines run model selection using non-linear regression from the package 

𝑛𝑙𝑚𝑒 (Pinheiro et al. 2023). The choice of model includes those used in Case 1 and 2, in 

addition to other candidate models. The starting value of the parameter “a” is based on the 

maximum duration developmental time. The starting value of “b” is obtained by trial and error, 

starting with b=1. 

dfDD2<-df[which(!is.na(df$DD) & df$mu<=1 & df$x==70),] 

 
max(dfDD2$DD)  

## [1] 99 

d1<-nls(DD~a/(mag*tt)^b, start=list(a=90,b=1),data=dfDD2) 
d2<-nls(DD~a/(1+mag*tt)^b, start=list(a=90,b=1),data=dfDD2) 
d3<-nls(DD~a*exp(b/mag*tt),start=list(a=90,b=0.1),data=dfDD2) 
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d4<-nls(DD~a*exp(-b*mag*tt),start=list(a=90,b=0.01),data=dfDD2) 
AIC(d1,d2,d3,d4) 

##    df       AIC 

## d1  3  77.05104 
## d2  3  77.00644 
## d3  3 146.78126 
## d4  3  79.53617 

dfDD2$fitd<-fitted(d1) 
cor.test(dfDD2$fitd,dfDD2$DD) 

##  
##  Pearson's product-moment correlation 
##  
## data:  dfDD2$fitd and dfDD2$DD 
## t = 29.872, df = 15, p-value = 8.855e-15 
## alternative hypothesis: true correlation is not equal to 0 

## 95 percent confidence interval: 
##  0.9765171 0.9970807 
## sample estimates: 
##       cor  

## 0.9916998 

summary(d1) 

##  
## Formula: DD ~ a/(mag * tt)^b 

##  
## Parameters: 
##    Estimate Std. Error t value Pr(>|t|)     
## a 1.315e+04  2.367e+03   5.554 5.52e-05 *** 
## b 1.007e+00  3.544e-02  28.410 1.86e-14 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 2.082 on 15 degrees of freedom 
##  
## Number of iterations to convergence: 9  
## Achieved convergence tolerance: 2.125e-07 

xyplot(fitd~DD,cex=1, pch=21, col="black",fill="aliceblue", data=dfDD2, yl

ab="Fitted time to maturation",  
       xlab="Observed time to maturation") 

xyplot(DD~I(mag*tt),cex=1, pch=21, col="black",fill=" dark blue", data=dfD

D2, ylab="Time to maturation",  
       xlab="tm")+ 
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  xyplot(fitd~I(mag*tt),pch=21,cex=0.5, col="black",fill="aliceblue", data

=dfDD2) 

 

 

 

 

Figure S12. Two different graphs showing fitted vs observed time to maturation based in model 

d1 which showed the lowest AIC (with 𝛥𝐴𝐼𝐶 > 10 vs the subsequent model). In the first panel, 

blue symbols: observed; light blue: fitted. 
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The next step is to reproduce 𝜏 from fitted model. The first loop adds the fitted duration of 

development to the data frame dfDD, including the NAs. In the second step, the fitted 𝜏 −

𝑣𝑎𝑙𝑢𝑒𝑠 are calculated. 

j=1 
dfDD$mu<-df$mu[which(df$x==70)] 
dfDD$Dfit<-NA 
for (i in 1:nrow(dfDD)){ 
if(is.na(dfDD$DD[i])==TRUE|dfDD$mu[i]>1){next 
  }else{dfDD$Dfit[i]<-dfDD2$fitd[j] 
j=j+1}   
} 

 
# Calculation of fitted tau 
df$Dfit<-rep(dfDD$Dfit, each=100) 
df$taufit<-df$tt/df$Dfit 
df$taustarfit<-df$x/df$Dfit 

 

6.5.2 Tolerance and 𝜇 

Tolerance is defined as the magnitude of thermal fluctuation at which there is a critical response 

(coded as a switch of s from 0 to 1 in the data table). In the example, tolerance depends on 𝑡, 

but not on the time after the fluctuation is experienced (t*). Recall that in the example, 

measurements were made also after maturation, because at t*=70 some individuals already 

matured. Hence, the data set is not restricted to 𝜏∗ < 1. An alternative scenario would be that 

tolerance is quantified before or at (but not after) maturation. In such case, 𝜇 and 𝜏 can only be 

calculated in complementary data sets. 

dfE2<-dfE[which(!is.na(dfE$E) & dfE$x==70),] 
max(dfE2$E) 

## [1] 8 

dfE2<-dfE[which(dfE$x==70),] 

 
e1<-nls(E~a*(tt)^b, start=list(a=10,b=1),data=dfE2) 
e2<-nls(E~(a+b*log(tt)), start=list(a=10,b=1),data=dfE2) 
e3<-nls(E~a*exp(b/tt),start=list(a=10,b=0.1),data=dfE2) 

e4<-nls(E~a*exp(-b*tt),start=list(a=10,b=0.01),data=dfE2) 
AIC(e1,e2,e3,e4) 

##    df       AIC 
## e1  3  8.462066 
## e2  3  7.938269 

## e3  3 13.404193 
## e4  3  9.616453 
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dfE2$fit<-fitted(e2) 

 
xyplot(fit~E, data=dfE2) 

xyplot(E~tt, pch=21, col="black",fill="blue", data=dfE2, 
       ylab="Tolerance", xlab="Time scale of fluctuation,t") + xyplot(fit~

tt,cex=0.5,type="b", data=dfE2) 

 

 

 

 

Figure S13. Top panel: Fitted vs observed tolerance. Bottom panel: fitted (line) vs observed 

tolerance limit (blue circles). All panels are based in model 𝑒2 which showed the slightly lowest 

AIC (than competing models with the same number of parameters. 
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The next step is the calculation of fitted 𝜇. First, fitted tolerance range is stored in the time slice 

𝑥 = 70. Then, fitted 𝜇 is calculated as the ratio of fitted tolerance and m. Finally, both 𝜇-values 

calculated from fitted model and observations are plotted in the space of fluctuations. 

  dftstar<-subset(df, x==70) 
dftstar$Efit<-rep(dfE2$fit, each=10) 
dftstar$mufit<-dftstar$mag/dftstar$Efit 

 

 
mufitmat<-matrix(data=dftstar$mufit, nrow=10, ncol=9) 

 

 
contour2D(mumat,mag,tt,colkey = FALSE,  
          col=c("dark blue"),lty=2,lwd=2, 
          levels=c(1), 
          xlab="Magnitude", ylab="Time scale", 
          xlim=c(1,10),ylim=c(10,50), 
          add=FALSE) 
contour2D(mufitmat,mag,tt,colkey = FALSE,  
          col=c("red"),lty=1,lwd=2, 
          levels=c(1), 
          xlab="Magnitude", ylab="Time scale", 
          xlim=c(1,10),ylim=c(10,50), 
          add=TRUE) 

   

 

Figure S14. Curves showing 𝜇-values calculated from fitted model (red line) and observations 

(blue dashed line) at the time slice 𝑡∗ = 70. 
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6.5.3 Model for the invariant response (body size) 

For model fitting, we take the realistic scenario that the invariant response is not observed at 

𝜇 > 1. The response at 𝑡∗ = 70 is modeled using exponential and polynomial functions, 

considering a multiplicative term. The selection leads to two different candidate models and I 

choose the linear model. Notice that I had silenced some code in order to focus on the main 

output. 

dftstar$R2<-ifelse(dftstar$mu>1, NA,dftstar$R) 
dftstar2<-dftstar[which(!is.na(dftstar$R2)),] 
# Exponential model 
# Step by step processes used to find initial parameter values: 
# Step 1: estimate a and b 
rt<-nls(R2~a*exp(c*tt), start=list(a=10,c=-0.1),data=dftstar2) 

#Step 2: use estimated a and b as starting values 
rtm<-nls(R2~a*exp(b*mag+c*tt), start=list(a=13,b=-0.1,c=-0.003), 
         data=dftstar2) 
#Step 3: use estimated a,b and c, to find d. 

 
rtmexp<-nls(R2~a*exp(b*mag+c*tt+d*mag*tt), start=list(a=14,b=-0.02,c=-0.00

4,d=-0.0005), 
          data=dftstar2) 

 
rtmexp2<-nls(R2~a*exp(b*mag+c*tt), start=list(a=14,b=-0.02,c=-0.004), 
          data=dftstar2) 

 
rtmexp3<-nls(R2~a*exp(c*tt+d*mag*tt), start=list(a=14,c=-0.004,d=-0.0005), 
          data=dftstar2) 

 
rtmexp4<-nls(R2~a*exp(b*mag+d*mag*tt), start=list(a=14,b=-0.02,d=-0.0005), 
          data=dftstar2) 

 
rtmexp5<-nls(R2~a*exp(d*mag*tt), start=list(a=14,d=-0.0005), 

          data=dftstar2) 

 
AIC(rtmexp,rtmexp2,rtmexp3,rtmexp4,rtmexp5) # Keep rtmexp3 

##         df      AIC 
## rtmexp   5 49.10956 
## rtmexp2  4 69.39824 
## rtmexp3  4 47.17395 
## rtmexp4  4 49.18062 
## rtmexp5  3 53.31589 
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# Linear model 
rtmlin<-lm(R2~tt+mag+I(tt*mag), data=dftstar2) 
rtmlin2<-lm(R2~tt+mag, data=dftstar2) 

rtmlin3<-lm(R2~mag+I(tt*mag), data=dftstar2) 
rtmlin4<-lm(R2~tt+I(tt*mag), data=dftstar2)# best linear model 
rtmlin5<-lm(R2~I(tt*mag), data=dftstar2) 
AIC(rtmlin,rtmlin2,rtmlin3,rtmlin4,rtmlin5) 

##         df      AIC 
## rtmlin   5 49.02313 
## rtmlin2  4 66.95880 
## rtmlin3  4 49.82108 
## rtmlin4  4 47.02611 
## rtmlin5  3 53.28650 

AIC(rtmlin4,rtmexp3) 

##         df      AIC 

## rtmlin4  4 47.02611 
## rtmexp3  4 47.17395 

# There are two different models with similar fit.  
cor.test(fitted(rtmlin4),dftstar2$R2, na.rm=TRUE) 

##  
##  Pearson's product-moment correlation 
##  
## data:  fitted(rtmlin4) and dftstar2$R2 

## t = 15.019, df = 54, p-value < 2.2e-16 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  0.8317671 0.9393256 
## sample estimates: 
##       cor  
## 0.8982463 

cor.test(fitted(rtmexp3),dftstar2$R2, na.rm=TRUE) 

##  
##  Pearson's product-moment correlation 
##  
## data:  fitted(rtmexp3) and dftstar2$R2 
## t = 14.994, df = 54, p-value < 2.2e-16 
## alternative hypothesis: true correlation is not equal to 0 
## 95 percent confidence interval: 
##  0.8313141 0.9391526 

## sample estimates: 
##       cor  
## 0.8979623 
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#qqnorm(resid(rtmexp3)) 
#qqnorm(resid(rtmlin4)) 

 
#xyplot(fitted(rtmlin4)~dftstar2$R2) 
#xyplot(fitted(rtmexp3)~dftstar2$R2) 
summary(rtmlin4) 

##  
## Call: 
## lm(formula = R2 ~ tt + I(tt * mag), data = dftstar2) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.68535 -0.22472 -0.02086  0.24723  0.78522  

##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 13.536600   0.114992 117.718  < 2e-16 *** 
## tt          -0.012861   0.004431  -2.902  0.00539 **  
## I(tt * mag) -0.009608   0.000926 -10.376 2.28e-14 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.3524 on 53 degrees of freedom 
## Multiple R-squared:  0.8068, Adjusted R-squared:  0.7996  
## F-statistic: 110.7 on 2 and 53 DF,  p-value: < 2.2e-16 

 
xyplot(R2~I(tt+mag*tt), pch=21, col="black",fill="aliceblue",  

data=dftstar2, 
       ylab="Size, R", xlab="t + mt") + 
  xyplot(fitted(rtmlin4)~I(tt+mag*tt),cex=0.7,pch=20, 
         col="black", data=dftstar2)+ 

  xyplot(fitted(rtmexp3)~I(tt+mag*tt),cex=0.7,col="red",pch=20, 
         data=dftstar2) 
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Figure S15. Observed body size (light blue symbols) at 𝑡∗ = 70 and the fitted values for the 

linear and exponential models in response to the predictors (both models are fitted to the same 

set of predictors). 

 

 

 

We now use the linear model to predict response in clock time: 

dfpred<-data.frame(expand.grid(mag=seq(1,10,0.2),tt=seq(10,50,2))) 
dfpred$x<-rep(70,nrow(dfpred)) 
dfpred$DD<-predict(d1,newdata=dfpred) 
dfpred$taustar<-dfpred$x/dfpred$DD 
dfpred$tau<-dfpred$tt/dfpred$DD 

 
dfpred$E<-predict(e2, newdata=dfpred) 
dfpred$mu<-dfpred$m/dfpred$E 
dfpred$R<-predict(rtmlin4,newdata=dfpred) 

 

The following code allows to visualize predictions. The first step is to create data matrices and 

then the plots 

mag=seq(1,10,0.2) 
tt=seq(10,50,2) 

https://doi.org/10.3354/meps14414


Supplement to Gimenez (2023) – Mar Ecol Prog Ser 721:17–38 – https://doi.org/10.3354/meps14414 

 

 
 

34 

sizemat<-matrix(data=dfpred$R, nrow=46, ncol=21) 
mumat<-matrix(data=dfpred$mu, nrow=46, ncol=21) 
taumat<-matrix(data=dfpred$tau, nrow=46, ncol=21) 

taustarmat<-matrix(data=dfpred$taustar, nrow=46, ncol=21) 

 
# Plots 
image2D(sizemat,mag,tt,colkey = TRUE, resfac = 6, 
          #levels=seq(0.1,3.4,0.2),  
          xlim=c(1,10),ylim=c(10,50),zlim=c(8,14), 

        xlab="Magnitude", ylab="Time scale") 

 
image2D(mumat,mag,tt,colkey = FALSE,  
        contour=list(TRUE,nlevels=1, col="black"), 
        resfac = 6, 
        col="transparent", 

        #breaks=c(0,1,2), 
        #lty=1,lwd=1, 
        xlab="Magnitude", ylab="Time scale", 
        xlim=c(1,10),ylim=c(10,50),zlim=c(0,1), 
        add=TRUE) 
contour2D(mumat,mag,tt,colkey = FALSE,  
        levels=c(1), 
        lty=1,lwd=1, 
        xlab="Magnitude", ylab="Time scale", 
        xlim=c(1,10),ylim=c(10,50), 
        add=TRUE) 

 

 
contour2D(taumat,mag,tt,colkey = FALSE,  
          col=c("dark blue"),lty=2,lwd=2, 
          levels=c(1), 
          xlab="Magnitude", ylab="Time scale", 
          xlim=c(1,10),ylim=c(10,50), 
          add=TRUE) 
contour2D(taustarmat,mag,tt,colkey = FALSE,  
          col=c("dark blue"),lty=1,lwd=2, 
          levels=c(1), 
          xlab="Magnitude", ylab="Time scale", 
          xlim=c(1,10),ylim=c(10,50), 
          add=TRUE) 

 
rect2D(x0=1,y0=10,x1=10,y1=50, col="transparent",add=TRUE) 
abline(v =5.1, lty = 2) 
abline(h =30, lty = 2) 
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Figure S16. The predicted response in the 𝑚𝑡-projection. The black continuous line 

corresponds to 𝜇 = 1, defining the region of existence. The black dashed line delimits the 

region (𝑚 < 5) where the tolerance becomes independent of the time scale of the fluctuation. 

The horizontal black dashed line indicates the region (𝑡 > 30) where fluctuations enable 

maturation. The blue line corresponds to 𝜏∗ = 1 and the blue dashed line is 𝜏 = 1. The line of 

𝜏∗ = 1 gives the time of maturation. In the example, the time of maturation was simulated also 

for 𝜇 > 1 in order to show the region the fluctuation magnitude is high enough to elicit a 

response before the organisms reach maturation (the 𝜏 = 1 line lies in the region where 𝜇 >

1). The line of 𝜏 = 1 gives the set of fluctuations with time scales equal to that of the time of 

maturation. In this case, fluctuations of such length are located in the region of 𝜇 > 1 showing 

that such type of fluctuations would not be tolerated (within the region investigated in the 

experiment). 

 

 

6.5.4 Modelling the response at maturation 

Because individuals still grow after the fluctuation is experienced, we cannot use the previous 

model fit (valid only for 𝑡∗ = 70). Because body size is measured only 2 times, we cannot 

model size as 𝑅 = 𝑓(𝑡∗, 𝑡, 𝑚). Instead, we have to create separate models for 𝑅(𝑡, 𝑚|𝑡∗ = 1) 

and 𝑟(𝑡, 𝑚|𝜏∗ = 1) considering 𝜇 ≤ 1). 

dfRtau<-df[which(df$taustar==1 & df$mu<=1),c(2,3,7)] 

 
m1<-lm(R~tt+mag+I(tt*mag), data=dfRtau) 
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m2<-lm(R~tt+mag, data=dfRtau) 
m3<-lm(R~tt+I(tt*mag), data=dfRtau) 
m4<-lm(R~mag+I(tt*mag), data=dfRtau) 

m5<-lm(R~I(tt*mag), data=dfRtau) 
m6<-lm(R~1, data=dfRtau) 
AIC(m1,m2,m3,m4,m5,m6) 

##    df      AIC 
## m1  5 53.38721 
## m2  4 55.99130 
## m3  4 51.39432 
## m4  4 51.49063 
## m5  3 50.41331 
## m6  2 89.14155 

summary(m5) 

##  

## Call: 
## lm(formula = R ~ I(tt * mag), data = dfRtau) 
##  
## Residuals: 

##     Min      1Q  Median      3Q     Max  
## -1.2827 -0.5057  0.2119  0.4230  1.9221  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 19.619552   0.757138   25.91 4.19e-15 *** 
## I(tt * mag) -0.044027   0.003891  -11.31 2.46e-09 *** 
## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.8232 on 17 degrees of freedom 
## Multiple R-squared:  0.8828, Adjusted R-squared:  0.8759  
## F-statistic:   128 on 1 and 17 DF,  p-value: 2.462e-09 

dfRtau$fit<-fitted(m5) 

 

 
xyplot(fit~R, data=dfRtau,ylab="Fitted R", xlab="Observed R")  

 xyplot(R~I(mag*tt), pch=21, col="black",fill="aliceblue", data=dfRtau, 

       ylab="Size, R", xlab="mt") + 

  xyplot(fit~I(mag*tt),cex=0.7,pch=20, type="b", 

         col="black", data=dfRtau) 
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Figure S17. Observed and fitted body size at maturation 𝜏∗ = 1 for the best model in response 

to the predictors. 

Representation of size at maturation: 

mag=seq(min(dfRtau$mag),max(dfRtau$mag),length.out=25) 
tt=seq(min(dfRtau$tt),max(dfRtau$tt),length.out=25) 
dfpredtau<-data.frame(expand.grid(mag=mag,tt=tt)) 

dfpredtau$R<-predict(m5, newdata=dfpredtau) 
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sizemat<-matrix(dfpredtau$R,nrow=25,ncol=25) 

 
image2D(sizemat,mag,tt,colkey = TRUE, resfac = 6, 
        xlim=c(3,7),  
        xlab="Magnitude", ylab="Time scale") 

 

 

Figure S18. Predicted response at maturation, 𝜏∗ = 1 in the 𝑚𝑡-projection, for 𝜇 < 1. The 

predictions correspond to the observations shown as scatterplot in Fig 6. Both the observed and 

predicted size at maturation lie on a surface that crosses the time slice 𝑡∗ = 70 and hence do 

not use the same data. 

 

6.5.5 Modeling and simulating interactive effects 

The difference between the response at a fixed time clock vs fixed biological time is given by 

the form of the equations: 

𝑟 = 𝑅1(𝑡, 𝑚|𝜏∗ = 1) = 19 − 0.04𝑡𝑚 

𝑅2(𝑡, 𝑚; 𝑡∗ = 70) = 13 − 0.013𝑡 − 0.01𝑚𝑡 

The above equations also help us to understand the difference in the interactive effects of 𝑚 

and 𝑡 on body size, at both clock and biological time. In both cases there is a negative 

synergistic effect but the one at maturation is stronger than the one at a fixed clock time. Hence 

size at maturation is more responsive than size at a fixed clock time. 

Mathematically the interaction is obtained by differentiating the equations above and finding 

that the partial derivative with respect to any of the above components depends on the other 

component. For example 
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𝑑𝑟/𝑑𝑡 = −0.04𝑚 

𝑑𝑅/𝑑𝑡 = −0.013 − 0.01𝑚 

The following simulation shows the response at similar levels as it would be seen in a box & 

whisker plot. 

dfsim1<-dftstar2[,c(2,3)] 
dfsim<-data.frame(NULL) 
for (i in 1:100){ 
  sR<-simulate(rtmlin4,n=1) 
dfsim1$sR<-sR$sim_1 
dfsim1$N<-i 
dfsim<-rbind(dfsim,dfsim1) 
} 

 
dfsim2<-dfRtau[,c(1:2)] 
dfsimtau<-data.frame(NULL) 

for (i in 1:100){ 
  sR2<-simulate(m5,n=1) 
dfsim2$sR<-sR2$sim_1 
dfsim2$N<-i 

dfsimtau<-rbind(dfsimtau,dfsim2) 
} 

Both responses coincide in a narrow range of values and the interaction effect is not very clear. 

colNPars <- list(superpose.polygon = list(col = c("aliceblue","green")), 
                    superpose.symbol = list(fill = c("aliceblue","green"))

) 

 
dfsimsub<-subset(dfsim,mag %in% c(4,6) & tt %in% c(35,40)) 
dfsimsubtau<-subset(dfsimtau,mag %in% c(4,6) & tt %in% c(35,40)) 

 
bwplot2(sR~factor(mag), groups=factor(tt), data=dfsimsub, 
        ylab="Size at t*=70", xlab="Fluctuation magnitude", 
        fill=c("aliceblue","green"), 
        auto.key=list(text=c("t=35","t=40")), 
         par.settings=colNPars) 

bwplot2(sR~factor(mag), groups=factor(tt), data=dfsimsubtau, 
        ylab="Size at \u03C4*=1", xlab="Fluctuation magnitude", 
        fill=c("aliceblue","green"), 
        auto.key=list(text=c("t=35","t=40")), 
         par.settings=colNPars) 
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Figure S19. Simulations of an experiment comparing responses to 𝑚 and 𝑡 at a fixed clock 

time (top panel) vs at maturation (bottom panel). Note that the range of 𝑚 and 𝑡 values is too 

narrow to visualize the interaction. However, it is clear that the effect of 𝑡 is stronger at 

maturation than at 𝑡∗ = 70. 

The following simulation highlights the difference in the sensitivity to 𝑚 and 𝑡 by covering a 

wider range of values. 

dfsimsub<-subset(dfsim,mag %in% c(2,4,6) & tt %in% c(10,30)) 
bwplot2(sR~factor(mag), groups=factor(tt), data=dfsimsub, 
        ylab="Size at t*=70", xlab="Fluctuation magnitude", 
        fill=c("aliceblue","green"), 
        auto.key=list(text=c("t=10","t=30")), 
         par.settings=colNPars) 
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Figure S20. Simulations of an experiment comparing responses to 𝑚 and 𝑡 at a fixed clock time 

𝑡∗ = 70. 

 

The figure below illustrates the interaction by plotting the response as a function of the time 

scale of the fluctuation at fixed values of the magnitude (3 and 5). 

p1<-xyplot(R~tt, groups=factor(dfpred$mag, levels=c(3,5)), data=dfpred,yla

b="R(t,m,t*=70)", xlab="Clock time scale", 
           pch=21, col="black",fill=c("aliceblue","green"), 
            xlim=c(25,49), ylim=c(8,18)) 
p2<-xyplot(R~tt, groups=factor(dfpredtau$mag, levels=c(3,5)), data=dfpredt

au,ylab="r(t,m,\u03C4=1)", xlab="Clock time scale", 
           pch=21, col="black",fill=c("aliceblue","green"), 
            xlim=c(25,49),ylim=c(8,18)) 

 
grid.arrange(p1,p2, nrow=1) 

 

https://doi.org/10.3354/meps14414


Supplement to Gimenez (2023) – Mar Ecol Prog Ser 721:17–38 – https://doi.org/10.3354/meps14414 

 

 
 

42 

  

Figure S21. Comparison of responses at a fixed clock time vs at maturation. Note that the 

response at maturation is more sensitive to 𝑡 than it is at a fixed clock time. These results show 

that we need to be clear about the choice of metric for time. 

 

6.6 Scale transition theory 

In this section, a set of fluctuations (e.g. heatwaves) are presented and the objective is to 

estimate the average response triggered by the fluctuations. There are three options for 

predictions: (1) model simulations, (2) scale transition theory, (3) mean field approach. 

The field data is represented by the file mapping the heatwaves. The interest is in predicting 

the average response to those heatwaves with time scales larger than 10 days, that may be 

considered as extreme and at the limit of the region of existence. The reference temperature 

(no fluctuation) is set to 15°C, so that m is calculated as the difference between the maximum 

temperature and 15°C. 

 

 

mhw <- data.frame(read_csv("heatwavescaledvf.csv")) 

mhw$tt<-mhw$duration 
mhw$mag<-mhw$MaxTemperature-15 

xyplot(tt~mag, data=mhw) 
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Figure S22. A set of fluctuations mapped according to their components in the extrinsic frame 

(tt= time scale, mag=magnitude). 

 

The calculations below will lead to three different types of prediction 1. From model 2. From 

mean heatwave 3. Scale transition theory. For scale transition theory, the equation needed is 

given in Koussoroplis et al. (2017). In the following, and to simplify the notation, I will 

consider that R is quantified at a fixed time (either clock or biological) and will drop the indices 

t* and τ*. I take the following notation: 

𝑅(𝑚, 𝑡) = 𝑅0 

𝑑2𝑅(𝑚, 𝑡)/𝑑𝑚2|𝑚,𝑡 = 𝑅″11 

𝑑2𝑅(𝑚, 𝑡)/𝑑𝑡2|𝑚,𝑡 = 𝑅″22 

𝑑2𝑅(𝑚, 𝑡)/𝑑𝑚𝑑𝑡|𝑚,𝑡 = 𝑅″12 

𝑉𝑎𝑟(𝑚) = 𝑎11 

𝑉𝑎𝑟(𝑡) = 𝑎22 

𝐶𝑜𝑣(𝑚, 𝑡) = 𝑎12 

The scale transition equation can be re-written as: 

𝑅(𝑚, 𝑡) = 𝑅0 + 0.5𝑎11𝑅″11 + 0.5𝑎22𝑅″22 + 𝑎12𝑅″12 
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For calculation purposes, I find it better to express the equation using matrix algebra notation, 

as an inner product of two vectors: 

𝑅(𝑚, 𝑡) = 𝐴𝑅′ 

where the symbol ’ denotes transposition and where A and R are the following row vectors: 

𝐴 = [1,0.5𝑎11, 0.5𝑎22, 𝑎12] 

𝑅 = [𝑅0, 𝑅″11, 𝑅″22, 𝑅″12] 

Given the equations obtained above the mixed derivatives are constants and the second 

derivatives are zero; hence we obtain: 

𝑅 = [𝑅0, 0,0, −0.01] for 𝑡∗ = 70 days 

𝑅 = [𝑅0, 0,0, −0.04] for 𝜏∗ = 1 

With R0 depending on whether the response is calculated at t*=70 days or τ*=1 

Calculations: 

# 1 From model 
mhw$Rtstar<-predict(rtmlin4,newdata=mhw) 
mhw$Rtaustar<-predict(m5, newdata=mhw) 
# 2 From mean field 
media1<-predict(rtmlin4,newdata=data.frame(mag=mean(mhw$mag),tt=mean(mhw$t

t))) 
media2<-predict(m5,newdata=data.frame(mag=mean(mhw$mag),tt=mean(mhw$tt))) 

 
# 3 From scale transition theory 

 
# I am calculating it as an inner product between vectors 
# Vector of derivatives and other terms 
A.tstar<-c(1,0,0,rtmlin4$coefficients[3]) 
A.taustar<-c(1,0,0,m5$coefficients[2]) 
# Vector of Means, variances and covariance for field data 
R.tstar<-c(media1,I(0.5*var(mhw$mag)),I(0.5*var(mhw$tt)),cov(mhw$tt,mhw$ma

g)) 
R.taustar<-c(media2,var(mhw$mag),var(mhw$tt),cov(mhw$tt,mhw$mag)) 
# Inner products 
stt1<-A.tstar%*%R.tstar 
stt2<-A.taustar%*%R.taustar 

 

 
#Results 
resu<-data.frame(Coordinate=c("Clock", "Biological"), 

           Time=c("70 days","maturation"),  
           Model = c(mean(mhw$Rtstar),mean(mhw$Rtaustar)), 
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           Mean.MHW=c(media1,media2), 
           STT=c(stt1,stt2)) 
knitr::kable(resu, 

             caption="Table S2. Average response to marine heatwaves of mo

re than 10 days long, estimated from model, mean field components and scal

e transition theory up to second order.") 

Table S2. Average response to marine heatwaves of more than 10 days long, estimated from 

model, mean field components and scale transition theory up to second order. 

Coordinate Time Model Mean.MHW STT 

Clock 70 days 11.92024 11.94870 11.91805 

Biological maturation 14.03158 14.16197 14.02155 

 

End of code 
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Section S7: The space of fluctuation from the perspective of a second species 

Here I use the models in cases 1 and 2 to show that one can add a second species or organism 

and obtain a set of coordinate frames completely independent human metrics of time and 

tolerance. I start by recalling the mapping functions for the two species with numbers 1,2 

indexing the respective mapping functions: 

µ1 = 𝑚(𝑆0 + 𝑘𝜇𝑡)  

𝜏1 = 𝑡(𝐷𝑚𝑖𝑛 + 𝑘𝜏/𝑚)−1  

µ2 =
𝑚

[𝑀𝑐𝑟𝑖𝑡−𝑀0−𝑧∙log(𝑡)]
  

𝜏2 = 𝑡𝐿𝑚𝑎𝑥 ∙ 𝑒
−𝐴

(𝑚+273)  

 

An easy way to get rid of m and t is to work with the coordinates of system 1. 

𝑚 = (µ1 − 𝑘𝜇𝑘𝜏𝜏1 )/(𝑆0 + 𝑘𝜇𝐷𝑚𝑖𝑛𝜏1) 

𝑡 = 𝜏1

(µ1𝐷𝑚𝑖𝑛 + 𝑆0𝑘𝜏) 

(µ1 − 𝑘𝜇𝑘𝜏𝜏1 )
 

Then we can plug the expression of m and t into those of µ2 and τ2. The resulting equations do 

not have m and t. 

µ2 =
(µ1−𝑘𝜇𝑘𝜏𝜏1 )

{𝑀𝑐𝑟𝑖𝑡−𝑀0−𝑧𝑙𝑜𝑔[
𝜏1(µ1𝐷𝑚𝑖𝑛+𝑆0𝑘𝜏) 

(µ1−𝑘𝜇𝑘𝜏𝜏1 )
]}(𝑆0+𝑘𝜇𝐷𝑚𝑖𝑛𝜏1)

  

𝜏2 = 𝜏1
(µ1𝐷𝑚𝑖𝑛+𝑆0𝑘𝜏) 

(µ1−𝑘𝜇𝑘𝜏𝜏1 )
𝐿𝑚𝑎𝑥 ∙ exp (

−𝐴

(µ1−𝑘𝜇𝑘𝜏𝜏1 )/(𝑆0+𝑘𝜇𝐷𝑚𝑖𝑛𝜏1)+273
)  
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