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1. ODE MODEL PARAMETERIZATION 
Table S1: Sources of default parameter values used in the ODE model simulations. Parameters 
whose values were varied (u, 𝜀s, 𝜀d, cs, and cd) are not shown. Code for all calculations is 
available at https://doi.org/10.5281/zenodo.8317545.  
 
Parameter Description Units Default 

Value 
Source 

rG Gametophyte maturation rate d-1 0.05 Deysher & Dean 
1984, Reed et al. 
1994 

µG Gametophyte mortality rate G-1 d-1 0.6 Reed 1990 
rJ Juvenile sporophyte maturation 

rate 
d-1 0.004 Dayton et al. 1984 

µJ Juvenile sporophyte mortality 
rate 

J-1 d-1 0.01 Dayton et al. 1984 

K Adult sporophyte carrying 
capacity 

ind m-2 1 Reed et al. 1988 

µA Adult sporophyte mortality rate d-1 0.002 SBC LTER et al. 
2023aa 

b Biomass per adult sporophyte kg ind-1 7 SBC LTER 2022ab, 
Kushner et al. 
2013c, SBC LTER 
et al. 2023aa 

r Adult sporophyte spore 
production rate 

spores kg-1 
d-1 

10 Estimated within 
modele 

d Adult sporophyte drift 
production rate 

kg drift kg-1 
d-1 

0.024 SBC LTER et al. 
2023aa 

gd Rate of drift consumption by 
urchins 

kg drift u-1 
d-1 

0.0011 DiFiore et al. 2021d 

g Max. grazing rate on adult 
sporophytes 

ind u-1 d-1 0.025 Karatayev et al. 
2021 

qG Grazing vulnerability of 
gametophytes relative to adults 
(max. grazing rate = qGg) 

– 1.2 Karatayev et al. 
2021 

qJ Grazing vulnerability of juvenile 
sporophytes relative to adults 
(max.grazing rate = qJg) 

– 1.2 Karatayev et al. 
2021 

p Reduction in grazing (relative to 
max.) if rates of drift production 
and consumption are equal 

– 0.1 Karatayev et al. 
2021 

ls Fraction locally produced spores 
that leave patch 

– 0.5 f 

ld Fraction locally produced drift 
that leaves patch 

– 0.5 f 
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aDataset includes monthly plant loss rates (used to estimate µA) as well as blade and frond loss 
rates (used to estimate d) and regression parameters for relating frond counts to plant biomass 
(used to convert observations of number of fronds per plant to plant biomass b) 
bDataset includes observations of giant kelp density and size (number of fronds per plant) 
cData paper with “Giant kelp size frequency” dataset from the CINP KFMP (size is recorded as 
number of fronds per individual; I used regression parameters from a to convert this to biomass) 
dData on urchin drift consumption from mesocosm experiments performed by Rennick et al. 
2022 
eValues were chosen such that the model produced biologically reasonable dynamics 
fCould take any value between 0 and 1; in the absence of data I chose 0.5 as a default 
 
2. THEORETICAL ODE MODEL ANALYSES 
 

 
Figure S1: Urchin feeding behavior as a function of the ratio of drift production to consumption 
rates (where drift is produced by adult kelp sporophytes A and consumed by urchins u). The 
parameter p is the proportional reduction in maximum urchin grazing rate (herbivory) when rates 
of drift production and consumption are equal (e.g., a value of p = 0.1 means grazing is reduced 
to 10% of its maximum value when rates of drift production and consumption are equal).  
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Figure S2: Effect of urchins, local retention rates, and kelp biomass on equilibrium kelp density. 
The x-axis is the density of urchins (u) and the y-axis is the equilibrium density of adult kelp 
sporophytes (A*). Solid and dashed lines indicate stable and unstable equilibria, respectively. 
Line color represents a) fraction of spores retained in the patch (1-ls), b) fraction of drift retained 
in the patch (1-ld), or c) biomass per kelp plant (b; kg per individual). Higher values of plant 
biomass correspond to greater per-capita spore and drift production. There is no external input of 
spores or drift (𝜀s = 𝜀d = 0). 
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Figure S3: Effect of external spore or drift input and local model parameters on the region of 
bistability predicted by the ODE model. Dotted, dashed, and solid lines correspond to no external 
inputs (𝜀s = 𝜀d = 0), input of spores only (𝜀s = 0.2 x spore export rate of an urchin-free patch at 
equilibrium; 𝜀d = 0), and input of drift only (𝜀s = 0; 𝜀d = 0.2 x drift export rate of an urchin-free 
patch at equilibrium), respectively. For each connectivity scenario, the red line is the lower 
bistability threshold (below this line, only the high kelp state is stable) and the blue line is the 
upper threshold (only the low kelp state is stable above this line). The system is bistable between 
the red and blue lines. Bold tick marks on the x-axes indicate the default value of each 
parameter.  
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Table S2: Sets of initial conditions used in the model simulations shown in Figure 3. The highest 
set corresponds to equilibrium densities (individuals m-2) of each kelp life stage in an 
undisturbed, fully connected patch with no urchins (i.e., the highest possible densities for the 
default values of local parameters). For each intermediate value of A0 (representing varying 
levels of disturbance), the corresponding values of J0 and G0 were calculated as functions of the 
proportional reduction in adult kelp density relative to its highest equilibrium value. If A0 was at 
least 50% of its highest possible value, J0 and G0 were set to their highest values, otherwise, the 
fraction of these early life stages remaining after a disturbance was assumed to be 2x as high as 
that of adult kelp (as adult kelp’s long fronds make it disproportionately susceptible to wave 
disturbance; Reed et al. 2011).  
 
Initial Condition Set A0 J0 G0 

lowest 0 0 10-4 

intermediate variable max(1, 2A0/0.9)*4.9 max(1, 2A0/0.9)*10.2 
highest 0.9 4.9 10.2 

 
 

 
Figure S4: Time series illustrating two scenarios from Fig. 3c (spore and drift connectivity with 
local disturbance). In both a) and b), patch 1 experiences a major disturbance (blue vertical lines) 
while patch 2 is unaffected. Urchin density in both patches was set to 19 individuals m-2. a) The 
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disturbance causes patch 1 to go to the low kelp state, and the loss of spore and drift input to 
patch 2 causes it to also collapse. b) At higher values of spore and drift connectivity, patch 1 
receives sufficient levels of spore and drift input from patch 2 to enable it to quickly recover, and 
both patches end up in the high kelp state. 
 

 
Figure S5: Effect of simultaneous variation in multiple recruitment parameters (spore production 
rate 𝜌, maturation rates rG and rJ, and mortality rates 𝜇G and 𝜇J) on the region of bistability for 
different types of connectivity. Parameters were varied by multiplying their default values by a 
“recruitment index”, ranging from 0.1 to 10. The mortality rates 𝜇G and 𝜇J were multiplied by the 
inverse of this index (as decreasing mortality rates indicate more favorable recruitment). Thus, 
an index of 10 means 𝜌, rG and rJ are equal 10x their default values and 𝜇G and 𝜇J are equal 0.1x 
their default values. External input and the bistability thresholds are as defined in Fig. S3. All 
other parameters are at their default values (Table 1). Under the most favorable conditions 
(recruitment index = 10), external input of spores has approximately the same effect on kelp 
stability as external input of drift (dashed and solid lines meet); however, this set of parameter 
values produces unrealistically fast kelp dynamics if assumed constant (Fig. S6). 
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Figure S6: Effect of simultaneous variation in recruitment parameters (spore production rate 𝜌, 
maturation rates rG and rJ, and mortality rates 𝜇G and 𝜇J) on giant kelp dynamics in the absence 
of connectivity. The default parameter set is shown in blue. The remaining simulations are 
labeled by the value of the “recruitment index” that multiplied the default recruitment parameters 
(e.g., 10x means 𝜌, rG and rJ equal 10x their default values and 𝜇G and 𝜇J equal 0.1x their default 
values). a) All parameters were kept constant for each simulation. b) Increase in recruitment 
index from 1x to 10x occurred during only a brief window (days 5–12) before the recruitment 
parameters returned to their default values. In both a) and b), all other parameters are at their 
default values (Table 1). In favorable conditions, giant kelp is thought to take 6-9 months to 
develop from a spore to a mature, canopy-forming adult (Dayton et al. 1984); thus, the higher 
recruitment scenarios (10x, 6.7x) produce unrealistically fast dynamics in a) but could be 
reasonable if restricted to brief pulses as in b). 
 
3. EMPIRICAL DATA 
 
3.1 Transect-level data 
The Santa Barbara Coastal Long Term Ecological Research site (SBC LTER) and Channel 
Islands National Park Kelp Forest Monitoring Program (CINP KFMP) conduct annual surveys of 
kelp forest communities at a total of 44 sites in and around the Santa Barbara Channel (Fig. S7). 
At each of these locations, divers record abundances of kelp forest species in quadrats and/or 
swaths positioned along one to several permanent transects. Surveys are performed in summer or 
early fall and, depending on the site, have been ongoing for 2–4 decades. From these data, I 
calculated annual transect-level urchin density as the sum of the densities of purple 
(Strongylocentrotus purpuratus) and red (Mesocentrotus franciscanus) urchins (the two 
dominant barren-forming species in this region; Harrold & Pearse 1987) within quadrats, 
averaged across all quadrats within a transect. For giant kelp, I used the density of kelp plants in 
contiguous swaths along the same transects. If kelp density in the transect was greater than 0.05 
individuals m-2 (the 15th density quantile of all non-zero kelp densities), I classified the transect 
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as being in a “high kelp” state, otherwise I considered it to be in a “low kelp” state. Fig. 5b in the 
main text shows the resulting distributions of urchin densities and kelp states. I note there are 
instances where kelp was in the low state and there were no urchins; in these cases, the transect 
was not an urchin barren and kelp density was low for some other reason (e.g., high sand cover, 
lack of external spores for recolonization, etc.). 
 
Full descriptions of these data and sampling methods are given by Kushner et al. 2013 (CINP 
KFMP data; see “Benthic density data” and “Giant kelp supplementary density data” sections) 
and SBC LTER et al. 2022a (SBC LTER giant kelp density data), SBC LTER et al. 2022c (SBC 
LTER benthic community survey data, including urchin densities), and SBC LTER et al. 2023b 
(LTER transect locations). In this study, I used the Southern California Bight Marine 
Biodiversity Observation Network’s “Integrated Kelp forest/reef: Quad and Swath Survey” 
dataset, which includes all data from both the SBC LTER and CINP KFMP programs in a single 
dataset (SBC MBON et al. 2021). 
 

 
Figure S7: Map of the benthic monitoring sites. SBC LTER = Santa Barbara Coastal Long Term 
Ecological Research, CNIP KFMP = Channel Islands National Park Kelp Forest Monitoring 
Program. 
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Figure S8: Distribution of urchin densities across the giant kelp metapopulation patches 
(arbitrarily numbered) containing benthic transects monitored by the SBC LTER and CINP 
KFMP. Each data point corresponds to observations in a single year. For patches containing 
more than one transect, the average urchin density across all transects in that year is shown. a) 
Patches along the mainland (Santa Barbara coastline). b) Patches along the four northern 
Channel Islands (San Miguel, Santa Rosa, Santa Cruz, and Anacapa) and Santa Barbara Island.  
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3.2 Patch-level data 
 
To calculate metapopulation-scale characteristics of southern California kelp forests, I required 
data on kelp abundance at larger spatial scales than given by the benthic surveys described 
above. One well-developed approach for collecting this type of data is to estimate the biomass of 
a kelp forest’s canopy (which, due to the buoyancy of giant kelp fronds, can be seen from the 
surface) from Landsat satellite images (see Cavanaugh et al. 2011 for a description of these 
methods). Landsat pixels cover the Southern California Bight with a spatial resolution of 30 m, 
and this method therefore provides estimates of kelp abundance throughout this entire region. By 
applying spatial autocorrelation and graph theory-based patch delineation algorithms to multi 
decadal Landsat data, Cavanaugh et al. (2014) were able to characterize the metapopulation 
structure of southern California kelp forests. The dynamics of this metapopulation are described 
in Castorani et al. (2015, 2017), and I used their published data in this study (Cavanaugh et al. 
2019, Castorani et al. 2022b, 2022c). 
 
The datasets referenced above include the location and area of every identified kelp patch in the 
southern California metapopulation (Fig. 5a), as well as the average canopy biomass and 
dispersal times among these patches in each semester between 1996-2006. The authors 
calculated a patch’s biomass by summing the canopy biomass in all Landsat pixels within that 
patch and taking the average of this total over each semester. For dispersal time, the monthly 
minimum mean dispersal times between each pair of patches were estimated using Regional 
Oceanic Modeling System (ROMS) solutions for the Southern California Bight (Dong et al. 
2009). Briefly, the authors released Lagrangian particles across a range of depths (5-30m) at 12 
hour intervals in ROMS connectivity cells and used the particles’ trajectories to calculate the 
minimum mean transit time of water parcels moving from one cell to another. The resulting 
transit times were assumed to be proportional to dispersal times between patches within these 
cells. For cases in which the distance between patches was smaller than the resolution of ROMS 
cells, linear interpolation was used to approximate dispersal times (see Castorani et al. 2022c for 
more details). As with biomass, dispersal times were averaged across each semester. I used these 
patch biomasses and dispersal times to calculate the semesterly connectivity of each 
metapopulation patch from 1996-2006 (eqn.s 13-14 in main text). 
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4. GLMM RESULTS AND ASSUMPTIONS 
 
GLMM assumptions 
The best-fitting GLMM included independent fixed effects of urchin density, patch connectivity, 
and patch area (Table S3). This model generally conformed well to model assumptions. 
Multicollinearity was low (variance inflation factors all <1.5; Zuur et al. 2009), the random 
effects were approximately normally distributed (Fig. S9), and there was no significant temporal 
or spatial autocorrelation in the residuals (Fig. S10). However, plotting the residuals against 
predicted values and against each fixed effect revealed several large outliers (Fig. S11).  All were 
cases in which kelp was in the low state despite the transects having low urchin densities and 
being in relatively large, well-connected patches. I investigated the possibility that these low kelp 
densities could be due to unsuitable habitat (i.e., lack of hard substrate in the transects) using 
available SBC LTER data on benthic substrate composition (SBC LTER et al. 2022b). I found 
that high sand cover may explain two of the outliers (Fig. S13-14), but the others appear to be 
due to larger-scale processes affecting kelp populations at the patch level (e.g., oceanographic 
conditions or intra-annual cohort dynamics; Castorani et al. 2022, Nisbet & Bence 1989; Fig. 
S14). Removing the four outliers improved model residuals (Fig. S12) and had minimal effects 
on model fitting and predictions (Table S3, Fig. S15-17).  
 
 
Table S3: Results of model selection for GLMMs fitted to the full dataset (left) and to the data 
set with outliers removed (right). Letters indicate fixed effects included in the model. U = urchin 
density, C = patch connectivity, A = patch area, and 0 = no fixed effects. UxC indicates an 
explicit interaction term between urchin density and patch connectivity. 

 
 
 
 

df
6UCA

AIC

7UxCA

delta

5UC

weights

6UxC
5UA
4U
5CA
4C
4A
30

225.8
226.2
229.7
230
235.8
235.9
273.1
284
291.4
295.9

0
0.5
4
4.3
10
10.1
47.3
58.2
65.7
70.1

0.5
0.4
0.1
0.1
0
0
0
0
0
0

df
6UCA

AIC

7UxCA

delta

5UC

weights

6UxC
5UA
4U
5CA
4C
4A
30

274.7
276.7
278.9
280.9
284.3
284.6
313.1
324.9
332.8
337.4

0
2
4.2
6.2
9.6
9.9
38.4
50.2
58.2
62.7

0.6
0.2
0.1
0
0
0
0
0
0
0

Full Data No outliers

https://doi.org/10.3354/meps14475


Supplement to Detmer (2024) – Mar Ecol Prog Ser 726: 49-69 – https://doi.org/10.3354/meps14475 
 

 12 

 
Figure S9: Quantile-quantile plots of the random effects in the GLMM model (transect and 
year). The solid line and gray shaded region are the predictions and 95% confidence intervals of 
a linear regression model fit through the points.  
 

 
Figure S10: a) ACF plot of residuals (averaged across all transects) demonstrating no significant 
temporal autocorrelation among residuals. b) Spline correlogram demonstrating no significant 
spatial autocorrelation among residuals. 
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Figure S11: GLMM partial residuals (Zuur et al. 2009) plotted against each fixed effect. LOESS 
smoothers are shown in blue. 
 

 
Figure S12: Partial residuals of the GLMM re-fitted without outliers plotted against each fixed 
effect. LOESS smoothers are shown in blue. 
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Figure S13: Sand cover plotted against observed kelp densities for the four outliers identified in 
the GLMM residuals (open symbols). Values for the other transects in the same patches and 
same years as these outlier transects are shown in black. The dashed horizontal line indicates the 
threshold for the high kelp state. The outlier transect in patch 152 (part of the LTER’s IVEE site) 
and one of the outlier transects in patch 174 (part of the LTER’s AQUE site) have higher sand 
cover than the other transect(s) in their respective patches, which accounts for why kelp was in 
the low state in these transects. (Daniel Reed, pers comm). 
 

 
Figure S14: Kelp dynamics and sand cover in the outlier-containing patches around the time 
period in which the four residual outliers occurred. Each line represents a transect in the patch, 
with the kelp density and sand cover corresponding to the outliers marked with open symbols. As 
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suggested by Fig. S13, high sand cover appears to explain the outlier in patch 152. It may also 
explain the outliers in patch 174, as sand cover increased and kelp declined across all transects in 
this patch from 2004-2005. The transect AQUE.5 initially had higher kelp densities than the 
other two transects in patch 174, which could be why kelp in this transect remained above the 
threshold for the high state despite the increase in sand cover. However, sand does not appear to 
be responsible for the outlier in patch 190. Kelp densities declined slightly in all transects within 
this patch between 2003-2004, so the low kelp state observed in 2004 in transect BULL.3 could 
be a consequence of some larger-scale process affecting kelp throughout the patch. 
 

 
Figure S15: Estimated coefficients and bootstrapped 95% confidence intervals for the GLMM fit 
to the full data set (orange) and with outliers removed (blue). Note that fixed effects were not 
scaled prior to model fitting (to make comparison with the ODE model more intuitive); thus, the 
magnitudes of the coefficients within each model cannot be directly compared to one another.  
 

−3 −2 −1 0 1 2

Value of coefficient

p=6.4x10−8

p=0.0013

p=0.016

p=1.9x10−7

p=0.0015

p=0.02

patch 
area

patch 
conn

urchin 
density

full data
no outliers

GLMM fixed effects

https://doi.org/10.3354/meps14475


Supplement to Detmer (2024) – Mar Ecol Prog Ser 726: 49-69 – https://doi.org/10.3354/meps14475 
 

 16 

 
Figure S16: Predictions and bootstrapped 95% confidence intervals from the GLMM fit to a) the 
full data set and b) with outliers removed. Predictions are shown for the 15 (gray), 50 (blue), and 
85% (red) quantiles of patch connectivity. The top and bottom panels show observations of kelp 
in the low and high state, respectively, broken up into the 0-33% quantile (gray circles), 33-67% 
quantile (blue squares), and 67-100% quantiles (red triangles) of patch connectivity. Based on 
Figure 4 of Castorani et al. (2015). 
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Figure S17: Same as Fig. S16 but only showing urchin densities from 0-50 individuals m-2 (the 
range used in the ODE validation simulations). 
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Figure S18: Sensitivity of GLMM estimates and model selection to the value of the loss rate l 
used to calculate patch connectivity. In a-b), coefficient estimates and 95% confidence intervals 
are shown for the UCA model (independent fixed effects of urchin density, patch connectivity, 
and patch area). The top row shows results for GLMMs fit to the full dataset, while the bottom 
row shows results for GLMMs fit to the dataset with outliers removed. 
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Figure S19: Effect of threshold for the high kelp state (kelp individuals m-2) on estimates of 
GLMM fixed effect coefficients and 95% confidence intervals. Results are shown for the GLMM 
fit to a) the full dataset and b) the dataset with outliers removed. In both cases, the threshold did 
not affect the best-fitting GLMM, which included independent fixed effects of urchin density, 
patch connectivity, and patch area. There was a general reduction in urchin density’s effect size 
with increasing threshold value, which is possibly because factors other than urchin grazing (e.g., 
sand inundation, poor recruitment) are more likely to cause kelp density to fall into the low state 
when the threshold is higher.  
 
5. ODE-GLMM COMPARISON METHODS 
 
5.1 Ensemble approach for connectivity parameters 
 
To calculate rates of spores and drift input (the ODE parameters 𝜀s and 𝜀d, respectively) 
corresponding to observed values of patch connectivity, I used the following equations (also in 
Table 2): 
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𝜀' = ∑ 𝜃"𝜔'"𝑑𝑏#"(1 − 𝜆'")$$"#/exp(area%&)"   (S2) 

 
Where bCi is the observed canopy biomass in source patch i, and arealm is the area of the 
destination patch on the log-scale. When generating predictions from the GLMM, I used 
observed values of patch connectivity but set patch area equal to its mean value on the log-scale 
(allowing me to isolate effects of connectivity). Therefore, in the above equations, I assumed all 
destination patches had an area of arealm = exp(mean(log(patch area))), where patch area are the 
observed patch areas in the empirical dataset.   
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The remaining elements in eqn.s S1-2, defined in Table S4, are themselves parameters that 
needed to be estimated. To propagate uncertainty in these estimates through to calculations of 𝜀s 
and 𝜀d, I used an ensemble approach in which I drew values of each parameter from a probability 
distribution that, when possible, incorporated available information on the parameter’s potential 
values. Data on distributions of drift production rates (d) and the fraction of total kelp biomass in 
the canopy (θ-1) were available from SBC LTER data (SBC LTER et al. 2023a). For spore 
connectivity, I followed existing studies and set the expected values of dispersal times equal to 
the observed ROMS times. I also chose an expected value of 0.9 d-1 for spore loss rate, as this 
produces spore dispersal distances consistent with empirical estimates (Castorani et al. 2015). 
The remaining parameters had greater uncertainty, so I chose broad distributions to capture a 
range of possible values. In the case of drift dispersal times, I still assumed an underlying linear 
relationship with the ROMS times (as these are indicative of oceanographic distances between 
patches; Mitarai et al. 2009), but allowed the slope of this relationship to vary uniformly from 
0.5-1.5 (with slopes <1 indicating drift travels faster than the Lagrangian particles, e.g., due to 
wind along the surface, and slopes >1 indicating drift travels slower, e.g., due to drag).  
 
For a given value of patch connectivity (e.g., the 10% quantile of observed values), I generated 
40,000 values each of 𝜀s and 𝜀d using the following steps: 1) draw a single value each of ρ, d, ν, 
and β , 2) draw values of θ-1 , ωsi , ωdi , λsi, λdi, tsij, and tdij for each source patch i, 3) calculate 
potential connectivity and export rates of spores and drift using the results of steps 1-2, 4) repeat 
200 times, 5) multiply the resulting set of 200 potential connectivities and 200 export rates 
together and for each combination sum across all source patches to produce a value of 𝜀s and 𝜀d. I 
then used various quantiles from the resulting sets of 𝜀s and 𝜀d parameter values in my ODE 
simulations (Fig. 6, Fig. S23). 
 
Table S4: Distributions of the intermediate parameters used to calculate values of spore and drift 
connectivity. tROMSij indicates the ROMS-derived dispersal time from patch i to j. When 
necessary, values were truncated to remain within possible ranges for each parameter (i.e., all 
positive, between 0 and 1 for parameters representing fractions). 
Parameter Description Units Distribution 
qi -1 Fraction of kelp biomass in patch i 

located in the canopy 
– Normal(0.3, 0.15) 

wsi Fraction of locally produced spores 
exported from patch i 

– Normal(0.25, 0.1) 

wdi Fraction of locally produced drift 
exported from patch i 

– Normal(0.25, 0.1) 

r Spore production rate spores kg-1 d-1 Uniform(1, 100)  
d Drift production rate kg drift kg-1 d-1 LogNormal(-3.7, 0.5) 
lsi Spore proportional loss rate d-1 Normal(0.9, 0.01) 
ldi Drift proportional loss rate d-1 Normal(n, 0.025); 

v ~ Normal(0.75, 0.2) 
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tsij Spore dispersal time from patch i to j d Normal(tROMSij, 0.01) 
tdij Drift dispersal time from patch i to j d Normal(b*tROMSij, 0.1); 

b ~ Uniform(0.5, 1.5) 
 
 
5.2 Random effect parameters 
 
To estimate distributions of the random effect parameters (Table 2, Table S5), I used SBC LTER 
and CINP KFMP data on kelp plant size and densities of juvenile kelp from the transects and 
years in the GLMM dataset, as well as regional data on swell heights during this same time 
period (SBC LTER et al. 2022a, SBC LTER et al. 2022c, Kushner et al. 2013, Bell 2023). Plant 
size is recorded as the number of fronds per plant, which I converted to biomass using published 
relationships between frond density and plant biomass (Rassweiller et al. 2018, SBC LTER et al. 
2023a). I chose values of b (biomass per plant) equal to the means of the quintiles of observed 
plant masses (Table S5). As these represent quintiles, I assumed each value occurred in 20% of 
observations. I used the data on juvenile kelp densities to approximate recruitment conditions, 
which are captured in my ODE model by initial conditions, mortality rates, and maturation rates 
of gametophytes and juvenile sporophytes. I assumed observations of zero juveniles m-2 indicate 
poor recruitment (with mortality rates = 2x times default values and maturation rates = 0.2 x 
times default values), observations greater than 0 but less than the 80% quantile of non-zero 
values indicate intermediate recruitment, and observations above this quantile indicate favorable 
recruitment (Table S5). Based on these classifications, poor, intermediate, and favorable 
recruitment conditions occurred in 40, 48, and 12% of observations, respectively. Finally, I used 
the swell height data to infer disturbance regimes at each transect during the study period. These 
data are derived from a spectral refraction wave hindcast model (outputs provided by the Coastal 
Data Information Program; http://cdip.ucsd.edu/MOP_v1.1/ ) and have been formatted to give 
maximum quarterly swell heights in 30 x 30m Landsat pixels across southern California (Bell 
2023). I selected pixels that contained the focal transects and determined the number of severe 
storms that occurred in each of these pixels during the study period. Severe storms were defined 
as maximum swell heights of  ³2.5m (the threshold at which negative relationships with canopy 
biomass have been observed; Bell et al. 2015). These storms were represented in my ODE 
simulations by an indicator parameter Istorm, where Istorm = 1 meant that the system experienced a 
severe winter disturbance that removed 90% of existing giant kelp and Istorm = 0 meant there was 
no severe disturbance. I found that across all focal transects, severe storms occurred 
approximately once every 4 years on average, and therefore assumed Istorm = 1 and Istorm = 0 
occurred at frequencies of 0.25 and 0.75, respectively.  
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Table S5. Random effect parameters used in the ODE simulations. Default values of maturation 
and mortality parameters are given in Table 1 in the main text. 
Parameter(s) Description Values Frequencies 
b Biomass per kelp plant 

(proxy for productivity) 
{1.8, 4.2, 7.4, 12.8, 34.4} {0.2, 0.2, 0.2, 

0.2, 0.2} 
G0, J0, rG, rJ, 
µG, µJ 

Initial conditions, 
maturation rates, and 
mortality rates of early 
life stages (proxy for 
recruitment conditions) 

{poor, intermediate, favorable}: 
G0 = {0, 2.6, 16.6}, J0 = {0, 1.3, 
8.3}, rG & rJ = {0.2, 1, 1.2}x 
defaults,  
µG & µJ = {2, 1, 0.5}x defaults 

{0.4, 0.48, 
0.12} 

Istorm Indicator of whether a 
severe storm occurred 
(proxy for disturbance 
regime) 

{no storm, storm}: Istorm = {0,1} {0.75, 0.25} 

 
 
The resulting sets of random effect parameters and their corresponding frequencies are 
summarized in Table S5. These produced a total of 30 random effect parameter combinations, 
each representing possible environmental conditions in a given transect and year. I used these 
random effect parameters to generate predictions from my ODE model that approximate the 
effects of urchins and connectivity on giant kelp in an otherwise average transect and year (see 
Fig. S20). My first step was to select values of the fixed effect parameters u, 𝜀s and 𝜀d. As an 
example, for Fig. S20 I chose a set of 20 urchin densities between 0-50 urchins m-2 and no 
connectivity (𝜀s = 𝜀d = 0). For each combination of these fixed effect parameters (eg., u =10, 𝜀s = 
𝜀d = 0), I ran the ODE model with all possible combinations of random effect parameters in 
Table S5. Each of these simulations produced a value of A0min, the minimum initial kelp density 
above which kelp would be in the high state (>0.05 individuals m-2) at the end of one year (Fig. 
S20a-c, see main text for more details). I used the distribution of observed kelp densities during 
the study period (Fig. S21) to convert these A0min values into probabilities that kelp would be in 
the high state at the end of the simulated year (Fig. S20 d-f). Finally, I weighted the results for 
each random effect combination i by the joint probability of that combination occurring (i.e., the 
product of the probabilities of each value in that combination occurring) and summed across all 
possible random effect combinations. This resulted in a single weighted average of the 
probability that kelp would be in the high state for a given set of u, 𝜀s and 𝜀d values (Fig. S20g).  
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Figure S20: Example of how random effect parameters were averaged to produce a single 
prediction from the ODE model. Here, connectivity parameters 𝜀s and 𝜀d were both zero in all 
simulations. The ODE model was simulated for all possible combinations of recruitment 
conditions (rows 1-3), storm disturbance (line type) and biomass per plant b (line color). For 
each combination, A0min was computed (a-c) and converted to the probability of kelp being in the 
high state (d-f). The outputs for each parameter combination were then weighted by the joint 
probability of that combination occurring (see Table S5) and summed to produce and average 
probability of kelp being in the high state (g). 
 

 
Figure S21: a) Distribution of kelp densities in the data set used to fit the GLMM. b) 
Probabilities of kelp density being greater than or equal to a given density i, calculated as the 
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fraction of observed densities greater than or equal to the ith density. Probabilities were 
calculated using the full dataset (gray triangles) and again using the subset of the data with 
urchin densities less than 25 individuals m-2 (the 75th quantile of observed urchin densities in the 
data; blue circles). The probabilities calculated using the full data set were used to convert initial 
kelp densities predicted by my ODE model into probabilities of kelp being in the high state (Fig. 
S20). 
 
Assumptions 
A key assumption of the methods described above is that the probability of a given value of a 
random effect parameter occurring is independent of the other random and fixed effect parameter 
values. Furthermore, my conversion from A0min to Pr(high kelp) assumes the distribution of 
possible initial kelp densities is not strongly affected by values of the fixed and random effect 
parameters in the subsequent year. In reality, many of the processes represented by these 
parameters could interact with each other as well as influence initial kelp abundance (e.g., high 
urchin densities in the simulation year might indicate urchin densities were also high the 
previous year, making high initial kelp densities less likely). However, I found there were 
generally no strong relationships between any of my parameter values (Fig. S22). Furthermore, 
restricting my data set to observations with relatively low urchin densities had only minor effects 
on the distribution of initial kelp densities (Fig. S21b), suggesting my estimates of Pr(high kelp) 
are fairly robust. Thus, I concluded my simplified approach produced a reasonable 
approximation of the study region and time period used in this study. 
 
I also made several assumptions regarding local dynamics in each ODE simulation. In particular, 
I ignored potential intra-annual fluctuations in my fixed and random effect parameters. This was 
because, for most of these parameters, data was only available at a single time point each year 
and I therefore could not estimate changes in their values over shorter timescales. However, I did 
incorporate some seasonal dynamics in my simulations by increasing the background mortality 
rate of adult giant kelp, µA, from 0.001 to 0.007 during winter months (representing mild to 
intermediate intensity winter storms). Data to inform these dynamics were available from the 
SBC LTER, which has estimated monthly kelp plant loss rates at three sites along the Santa 
Barbara coast since 2002 (SBC LTER et al. 2023a). 
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Figure S22: Relationships between values of random effect parameters (with juvenile densities 
serving as a proxy for recruitment conditions). a) and b) show the relationship between mean 
biomass per adult kelp plant and density of juvenile kelp on the raw scale (a) and log scale (b). 
The raw data suggest a potential negative relationship between adult biomass and juvenile 
densities (possibly because larger plants shade the bottom and cause early life stages to be light-
limited; Graham et al. 1997); however, this pattern appears to be largely driven by a few extreme 
observations and is not apparent in the log transformed data. c) and d) show the distribution of 
mean biomass per plant values and juvenile kelp densities, respectively, in transects and years 
that did or did not experience a severe storm event (i.e., maximum swell height of at least 2.5m). 
I note that effects of storm disturbance could be stronger than suggested here, as it is possible the 
system had recovered by the time the transects were surveyed in late summer. However, in my 
ODE model, disturbance occurred several months after the start of each simulation, and therefore 
shouldn’t affect initial juvenile densities or biomass per plant.  
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5.3 Supplemental results 
 
 

 
Figure S23: Same as Figure 6 in the main text, but with results shown for additional quantiles of 
simulated 𝜀s and 𝜀d values. 
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6. DRIFTER ANALYSES 
 
Ohlmann 2019 used GPS drifters to record the paths of approximately 200 detached kelp plants 
along the Santa Barbara coastline. Plants were tagged monthly between November 2015 and 
December 2017 and tracked from their starting locations (one of three kelp forests off the coast 
of Santa Barbara) until they either washed ashore or began to leave the Santa Barbara Channel. 
The GPS instruments transmitted their positions every 10 minutes, providing detailed tracks of 
each drifting plant’s path (Fig. S24). See Ohlmann 2019 for more details on the methods.   
 
I overlaid the tracks of each tagged plant with the locations of the kelp metapopulation patches 
identified by Cavanaugh et al. (2014) and calculated the number of patches each individual 
plant’s path intersected. I found that 56% of plants moved through at least two patches, with one 
plant moving through a total of 6 patches (Fig. S25). The average distance between the first and 
last patch encountered by a kelp plant was 3.5 km. Thus, these data indicate exported drift kelp is 
not always immediately transported offshore or deposited on beaches, and may instead travel to 
neighboring kelp forests (although whether buoyant drift like the plants tracked here can become 
available to benthic urchins in recipient patches will require more studies).  
 

 
Figure S24: Example of a drifter track (blue) recorded by Ohlmann (2019) along the coast near 
the University of California, Santa Barbara. Kelp metapopulation patches are shown in dark teal. 
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Figure S25: Histogram of the number of metapopulation patches encountered by individual 
tagged drifting kelp plants (including patches of origin, for plants that were tagged within 
patches). 
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