Table S1: Statistical tests corresponding to Fig. 1. Linear mixed effects models (LMM) and generalized linear mixed effects models (GLMM) testing for pCO_2 effects on pre-flexion growth standard length, dry mass, yolk depletion, and feeding activity of larval Pacific herring (*Clupea pallasii*). Bolded p values indicate where the intercept or slope of elevated pCO_2 treatments differed significantly from the ambient pCO_2 group (intermediate treatment is abbreviated as inter.).

Standard Length (LI	MM)				
Factor	Estimate	Std. Error	df	t value	<i>p</i> value
Intercept	7.670	0.090	528.18	85.049	< 0.001
Inter. pCO_2	-0.258	0.128	528.13	-2.022	0.044
High pCO ₂	-0.193	0.130	528.12	-1.482	0.139
Age	0.304	0.015	11.87	20.644	< 0.001
Age \times Inter. <i>p</i> CO ₂	-0.014	0.021	11.98	-0.677	0.512
Age \times High p CO ₂	0.009	0.021	12.19	0.432	0.673
Log[Dry mass] (LM	<i>M</i>)	•			
Factor	Estimate	Std. Error	df	t value	<i>p</i> value
Intercept	-2.718	0.049	5.92	-55.438	< 0.001
Inter. pCO_2	-0.066	0.070	6.10	-0.950	0.378
High <i>p</i> CO ₂	0.001	0.070	6.21	0.009	0.993
Age	0.083	0.008	6.02	10.296	< 0.001
Age \times Inter. pCO_2	-0.008	0.011	6.09	-0.693	0.514
Age \times High p CO ₂	0.001	0.011	6.11	0.087	0.934
Yolk sac depletion st	tatus (GLMM))			
Factor	Estimate	Std. Error	z value	<i>p</i> value	
Intercept	6.322	1.663	3.8.02	< 0.001	
Inter. pCO_2	-2.094	1.885	-1.111	0.267	
High <i>p</i> CO ₂	-2.279	1.877	-1.214	0.225	
Age	-2.123	0.538	-4.023	< 0.001	
Age \times Inter. pCO_2	0.877	0.574	1.529	0.126	
Age \times High p CO ₂	0.945	0.570	1.657	0.097	
Feeding status (GLN	<i>MM</i>)				
Factor	Estimate	Std. Error	z value	<i>p</i> value	
Intercept	-0.325	0.652	-0.499	0.618	
Inter. pCO_2	0.232	0.846	0.274	0.784	
High <i>p</i> CO ₂	-1.050	0.967	-1.086	0.278	
Age	0.323	0.099	3.277	< 0.001	
Age \times Inter. pCO_2	-0.166	0.115	-1.435	0.151	
Age \times High <i>p</i> CO ₂	0.145	0.157	0.920	0.358]

Table S2: Statistical tests for long-term growth traits of juvenile Pacific herring (*Clupea pallasii*). Statistical tests corresponding to Fig. 2. Results of linear mixed effect models (LMMs) testing for pCO_2 effects on long-term growth (1-98 DPH) for standard length and log transformed dry mass, and a generalized additive model testing for pCO_2 effects on the length to mass relationship. Bolded *p* values indicate where the intercept or slope of elevated pCO_2 treatments differed significantly from the control group (intermediate treatment is abbreviated as inter.).

Standard Length (LMM)								
Factor	Estimate	Std. Error	df	t value	<i>p</i> value			
Intercept	6.781	0.289	6.037	23.454	< 0.001			
Inter. pCO_2	-0.406	0.410	6.075	-0.992	0.359			
High <i>p</i> CO ₂	0.397	0.411	6.148	0.968	0.370			
Age	0.381	0.016	5.666	24.257	< 0.001			
Age \times Inter. <i>p</i> CO ₂	0.014	0.022	5.669	0.646	0.544			
Age \times High p CO ₂	-0.023	0.022	5.674	-1.021	0.349			
Log[Dry Mass] (LM	IM)							
Factor	Estimate	Std. Error	df	t value	<i>p</i> value			
Intercept	-2.635	0.036	6.833	-73.056	< 0.001			
Inter. pCO_2	-0.121	0.051	7.015	-2.364	0.049			
High <i>p</i> CO ₂	0.079	0.052	7.111	1.542	0.166			
Age	0.088	0.002	6.777	46.970	< 0.001			
Age \times Inter. <i>p</i> CO ₂	0.003	0.003	6.793	0.984	0.359			
Age \times High p CO ₂	-0.004	0.003	6.802	-1.567	0.162			
Length to mass relationship (Generalized additive model)								
Factor	Estimate	Std. Error	t value	<i>p</i> value				
Intercept	-2.273	1.363	-1.667	0.097				
Inter. pCO_2	-0.017	0.098	-0.169	0.866]			
High <i>p</i> CO ₂	-0.024	0.102	-0.232	0.817]			

Table S3: Analysis of variance (ANOVA) results testing pCO_2 effects on long-term survival (1 – 98 DPH) and mixed-effect ANOVA testing maximum swim speed (N = 45) of Pacific herring (*Clupea pallasii*) corresponding to Fig. 3. Bolded *p* values indicate significant effects of pCO_2 treatment or a tested covariate (intermediate treatment is abbreviated as inter.). Numerator and denominator degrees of freedom are abbreviated as NumDF and DenDF, respectively.

Long term survival 1-98 DPH (ANOVA)							
Factor	df	Sum Sq	Mean Sq	F value	<i>p</i> value		
pCO_2	2	0.023	0.011	0.36	0.712		
Residuals	6	0.193	0.32				
Maximum Swim Speed (mixed-effect ANOVA)							
Factor	Sum Sq	Mean Sq	NumDF	DenDF	F value	<i>p</i> value	
pCO_2	809.8	404.9	2	37	2.048	0.143	
Standard length	351.0	351.0	1	37	1.776	0.191	
Condition factor	36.3	36.3	1	37	0.184	0.671	
Age (days)	206.8	206.8	1	37	1.046	0.313	
Hour of Day	354.2	354.2	1	37	1.792	0.189	
Temperature	49.0	49.0	1	37	0.248	0.621	

Table S4: Statistical results corresponding to Fig. 5. Analysis of variance (ANOVA) was used to test for pCO_2 effects on the ratio (logit transformed) of Pacific herring (*Clupea pallasii*) survivors and mortalities that were infected with viral hemorrhagic septicemia virus (VHSV). Bolded p values indicate a significant effect pCO_2 treatment.

VHSV Positive Mortalities (ANOVA)								
Factor	DF	Sum sq	Mean sq	F value	<i>p</i> value			
pCO_2	2	0.069	0.034	0.064	0.939			
Residuals	6	3.255	0.542					
VHSV Positive Survivors (ANOVA)								
Factor	DF	Sum sq	Mean sq	F value	<i>p</i> value			
pCO_2	2	0.300	0.150	0.500	0.630			
Residuals	6	1.797	0.300					

Table S5: Statistical results corresponding to Fig. 6. Mixed-effect analysis of variance (ANOVA) was used to test for pCO_2 effects on the standard length (SL), wet mass (WM), and condition factor (k) of Pacific herring (*Clupea pallasii*) mortalities and survivors that were exposed to viral hemorrhagic septicemia (VHS). NumDF and DenDF stand for numerator and denominator degrees of freedom, respectively. Bolded p values indicate a significant effect pCO_2 treatment.

VHS Mortalities (mixed-effect ANOVA)								
Trait	Factor	Sum Sq	Mean Sq	Numdf	DenDF	F value	<i>p</i> value	
SL (mm)	pCO_2	613	307	2	5.4	9.005	0.019	
WM (g)	pCO_2	4.5	2.3	2	252	13.037	<0.001	
k	pCO_2	0.013	0.007	2	4.6	0.568	0.603	
VHS Survivors (mixed-effect ANOVA)								
Trait	Factor	Sum Sq	Mean Sq	Numdf	DenDF	F value	<i>p</i> value	
SL (mm)	pCO_2	518	259	2	5.3	8.145	0.024	
WM (g)	pCO_2	15.9	7.9	2	283	27.814	<0.001	
k	pCO_2	0.306	0.153	2	5.7	13.385	0.007	

Table S6: Results of Cox regression analysis assessing the impact of pCO_2 rearing treatment on the survival of juvenile Pacific herring (*Clupea pallasii*) exposed to viral hemorrhagic septicemia virus with residual standard length (SL) and condition factor (k) as covariates. Data from the negative control group are not tested in this model. Two models are presented with ambient and intermediate pCO_2 (abbreviated as inter.) as references treatments to test all treatment comparisons. Model outputs include factorial change to hazard ratio (HR) relative to the reference level. HRs are presented as 95% confidence intervals (CIs) and effects that reached statistical significance are indicated by bolded p values.

Ambient pCO ₂ as reference treatment							
Factor	HR	HR 95% CI	Z	<i>p</i> value			
Ambient vs Inter. pCO_2	0.84	0.61–1.15	-1.105	0.269			
Ambient vs High pCO ₂	1.48	1.09-1.203	2.477	0.013			
Residual SL	1.00	0.98–1.02	0.160	0.873			
k	2.18	0.90-5.28	1.716	0.086			
Intermediate pCO ₂ as reference treatment							
Inter. vs Ambient pCO ₂	1.19	0.87-1.64	1.105	0.269			
Inter. vs. High pCO_2	1.77	1.27–2.46	3.391	<0.001			
Residual SL	1.00	0.98-1.02	0.160	0.873			
k	2.18	0.90-5.28	1.716	0.086			

Fig. S1: Daily temperature (°C) and pH_{NIST} daily recordings for nine replicate rearing tanks. Individual measurements (black points) are fit with a LOESS smoother (blue line). Tanks 1-3 are intermediate pCO_2 , tank 4-6 are high pCO_2 , and tanks 7-9 are ambient pCO_2 .

Fig. S2: Morphometric traits of juvenile Pacific herring (*Clupea pallasii*) that performed in maximum swim speed trails. (A) Standard length (SL), (B) wet mass (WM), and (C) condition factor (k). Large circles denote treatment means and vertical lines indicate \pm standard deviation. Small circles show measurements of individual fish (N = 45). Results of pairwise comparison post hoc tests are shown as letters above bars, where differing letters indicate significant differences between treatment groups (Tukey's honest significant difference). However, analysis of variance showed *p*CO₂ treatment had no statistical effect on any trait (SL: *p* =0.829; WM: *p* = 0.669; k: *p* = 0.097). Intermediate *p*CO₂ is abbreviated as inter.