Supplement

Methods (Grazer exclusion experimental design)

Figure S1: (A) The experimental design showing the randomised order of the treatment types and the distance between each treatment type and between transects. Transect 1 was on the far left towards the estuary upper reaches while Transect 5 was on the far right towards the estuary mouth, and the water's edge at the bottom. This experimental design was set up in the Kromme Estuary. Treatment types showing (B) the reduction cage, with a pit fall trap, (C) the caged control and (D) the uncaged control site. The caged control allows for crabs to enter the salt marsh area under investigation and therefore controls for crab effects when compared to the reduction cages, while the uncaged control site controls for cage effects.

Results (Grapsoid crab density in relation to salt marsh features)

Table S1: Summary of the salt marsh features measured (elevation, *Spartina maritima* stem density, *Spartina maritima* stem height, percentage vegetation cover, vegetation species richness), crab community (burrow density, burrow size, carapace width, carapace length) and sediment features (pH, redox potential: mV, moisture content (%), SOM (%), % clay, % sand, % silt) at three South African estuaries (Knysna, Kromme, Swartkops) in the months of September 2021 and April 2022 (mean ± SD). SOM (sediment organic matter); pH; mV (millivolts). The proportion of *Parasesarma catenatum* is compared to that of *Cyclograpsus punctatus*. The density of gastropods (*Assiminea* spp. primarily) as other potential grazers is also included.

Estuary	Kny	ysna	Kro	mme	Swartkops	
Stage of growth season	Beginning	End	Beginning	End	Beginning	End
Elevation (m)	118.6 (± 19.5)	137.9 (± 19.3)	125.8 (± 15.9)
Spartina Stem Density (n/m ²)	735 (± 478)	1382 (± 502)	1301 (± 388)	2251 (± 590)	918 (± 273)	3209 (± 884)
Spartina Stem Height (cm)	45.9 (±11.9)	54.0 (± 9.1)	46.5 (± 11.0)	45.4 (± 7.1)	46.9 (± 8.7)	53.0 (± 9.8)
% Vegetation Cover	54.9 (± 25.7)	83.9 (± 14.5)	48.8 (± 14.7)	68.6 (± 19.5)	44.3 (± 22.1)	63.3 (± 10.6)
Vegetation Species Richness	2 (± 1.1)	2 (± 0.8)	1 (± 0.8)	2 (± 0.5)	1 (± 0)	1 (± 0.6)
Burrow Density (n/m ²)	231 (± 167)	185 (± 113)	312 (± 143)	250 (± 91)	125 (± 101)	150 (± 117)
Burrow Size (mm)	7.2 (± 2.8)	8.1 (± 1.4)	5.7 (± 1.5)	8.4 (± 1.6)	6.7 (± 2.2)	6.8 (± 2.4)
Carapace Width (mm)	14.8 (± 4.9)	12.7 (± 4.5)	16.0 (± 3.2)	15.1 (± 3.2)	12.6 (± 3.2)	11.2 (± 2.3)
Carapace Length (mm)	12.1 (± 4.3)	10.2 (± 3.9)	12.9 (± 2.7)	12.4 (± 2.9)	10.0 (± 2.7)	8.8 (± 2.1)
Proportion Parasesarma catenatum	0.93 (n=232)	0.84 (n=267)	0.98 (n=215)	0.74 (n=266)	1.00 (n=226)	0.99 (n=215)
pH	6.6 (± 0.03)	6.7 (± 0.2)	6.6 (± 0.03)	6.8 (± 0.4)	6.7 (± 0.6)	6.7 (± 0.6)
Redox potential (mV)	142.0 (± 106.5)	68.1 (± 97.5)	32.1 (± 111.5)	159.1 (± 63.4)	34.3 (± 60.6)	13.1 (± 77.4)
Moisture Content (%)	8.4 (± 3.8)	7.3 (± 2.0)	8.6 (± 2.4)	7.2 (± 1.9)	12.2 (± 2.2)	10.5 (± 2.6)
SOM (%)	3.6 (± 3.4)	2.4 (± 1.7)	4.9 (± 2.1)	3.2 (± 1.2)	7.4 (± 1.9)	5.0 (± 2.3)
% Clay	17.2 (± 11.5)	10.6 (± 6.4)	12.0 (± 10.7)	24.0 (± 9.0)	24.8 (± 13.4)	44.9 (± 12.8)
% Sand	3.8 (± 2.5)	4.7 (± 3.0)	3.7 (± 2.1)	7.0 (± 4.8)	9.1 (± 2.6)	9.3 (± 3.3)
% Silt	79.0 (± 11.9)	84.7 (± 6.4)	84.4 (± 11.4)	69.0 (± 12.7)	66.1 (± 17.3)	45.8 (± 13.6)
Gastropod Density (n/m ²)	19 (± 59)	12 (± 45)	18 (± 95)	5 (± 16)	69 (± 277)	108 (± 359)

Table S2: Linear mixed effects model comparing the stem densities of *Spartina maritima* at three study sites (Knysna, Kromme, Swartkops). Season, site, burrow size, % sand and % silt were considered as the most-parsimonious predictors for the model, with the 'beginning of the growth season' and 'Knysna' being the reference categories to which the t-statistic and coefficients (C) are compared. Predictor variables overall are compared using the F-statistic. Significant parameters are indicated in bold.

	C± SE	t	F	Р
Season	—	_	96.79	< 0.001
End	88.83 (± 9.53)	9.32		<0.001
Site			20.90	< 0.001
Kromme Estuary	39.76 (± 10.83)	3.67		< 0.001
Swartkops Estuary	68.21 (± 14.68)	4.65		< 0.001
Burrow Density	0.05 (± 0.04)	1.50		0.14
Burrow Size	$-4.46 (\pm 2.03)$	-2.20		0.03
% Sand	$-4.00 (\pm 1.43)$	-2.80		0.007
% Silt	$-0.55(\pm 0.36)$	-1.53		0.13

Table S3: Linear mixed effects model comparing the stem height of *Spartina maritima* at Knysna, Kromme and Swartkops estuaries. Season, site, burrow size, % sand and % silt were considered as the most-parsimonious predictors for the model, with 'the beginning of the growth season', and 'Knysna'' forming the reference categories to which the t-statistic and coefficients (C) are compared. The F-statistic is used to compare the predictor variables overall. Significant parameters are indicated in bold.

	C± SE	t	F	Р
Season	—		5.80	0.02
End	3.08 (± 2.17)	1.42		0.16
Site	—		1.61	0.19
Kromme Estuary	$-2.87 (\pm 2.60)$	-1.10		0.27
Swartkops Estuary	-0.47 (± 2.96)	-0.16		0.87
Burrow Density	$-0.007 (\pm 0.008)$	-0.87		0.38
mV	$-0.03 (\pm 0.01)$	-3.08		0.003
SOM	$-0.86 (\pm 0.47)$	-1.83		0.07

Table S4: Linear mixed effects model comparing burrow density across three estuaries (Knysna, Kromme, Swartkops), compared to the most-parsimonious predictors of season and site, redox: mV, SOM, % sand and % silt. For the categorical predictors, 'the beginning of the growth season', and 'Knysna" were the reference categories to which the t-statistic and coefficients (C) are compared. The F-statistic is used to compare the predictor variables overall. Significant parameters are indicated in bold.

	C± SE	t	F	Р
Season			1.00	0.32
End	-62.70 (± 30.69)	-2.04		0.04
Site			10.07	0.0001
Kromme Estuary	65.86 (± 33.31)	1.98		0.05
Swartkops Estuary	-132.85 (± 45.97)	-2.89		0.005
mV	$-0.22 (\pm 0.14)$	-1.54		0.13
SOM	-8.05 (± 6.61)	-1.22		0.23
% Sand	5.56 (± 4.75)	1.17		0.25
% Silt	-1.64 (± 1.12)	-1.47		0.15

Results (Diet of grapsoid crabs)

Figure S2: Average *Spartina maritima* (% by volume) (\pm SE) from the gut content of two species of grapsoid crabs (*Cyclograpsus punctatus, Parasesarma catenatum*). Cyclograpsus punctatus was not sampled in the Swartkops.

Table S5: Multifactorial linear model comparing the gut content in terms of % *Spartina maritima* by volume of two species of grapsoid crabs collected at three South African estuaries (Knysna, Kromme, Swartkops) during September 2021. Species and site form the predictor variables of the model, with 'Cyclograpsus punctatus' and 'Knysna' being the reference categories to which the t-statistic and coefficients (C) are compared. Predictor variables overall are compared using the F-statistic. Significant parameters are indicated in bold.

	C(± SE)	t	F	Р
Species			6.53	< 0.05
Parasesarma catenatum	4.04 (± 1.65)	2.45		< 0.05
Site			0.57	0.57
Kromme Estuary	-1.14 (± 1.59)	-0.72		0.48
Swartkops Estuary	-1.63 (± 1.62)	-1.01		0.32

Table S6: Multifactorial linear model comparing δ^{13} C stable isotope signatures of different food sources consumed by two species of grapsoid crabs collected at three South African estuaries (Knysna, Kromme, Swartkops). Sampling took place in September 2021. Source, species and site form the predictor variables of the model, with 'Swartkops', '*Cyclograpsus punctatus*' and 'microphytobenthos' being the reference categories to which the t-statistic and coefficients (C) are compared. Predictor variables overall are compared using the F-statistic. Significant parameters are indicated in bold.

	C(± SE)	t	F	Р
Source			36.10	< 0.01
Epiphytes	0.14 (± 0.03)	4.22		< 0.001
Spartina	0.16 (± 0.03)	4.80		< 0.001
Sediment	0.15 (± 0.03)	4.65		< 0.001
Zostera	$0.05 (\pm 0.03)$	1.59		0.13
Detritus	0.01 (± 0.03)	0.38		0.71
Species			0.00	0.99
Parasesarma catenatum	$-0.04 (\pm 0.03)$	-1.17		0.26
Site			0.00	1.00
Kromme Estuary	$-0.000042 (\pm 0.02)$	-0.0020		1.00
Knysna Estuary	$0.000042 (\pm 0.02)$	0.002		1.00
Source:Species			4.47	< 0.01
Parasesarma catenatum: Epiphytes	$0.09 (\pm 0.04)$	2.10		0.05
Parasesarma catenatum: Spartina	$0.08 (\pm 0.04)$	1.92		0.07
Parasesarma catenatum: Sediment	$-0.05 (\pm 0.04)$	-1.17		0.26
Parasesarma catenatum: Zostera	$0.10 (\pm 0.04)$	2.43		0.03
Parasesarma catenatum: Detritus	$-0.01 (\pm 0.04)$	-0.23		0.82

Table S7: The %C and %N for the potential food sources consumed by *Cyclograpsuspunctatus* and *Parasesarma catenatum*, two species of grapsoid crabs, from three South Africanestuaries (Knysna, Kromme, Swartkops). The carbon to nitrogen ratios are also provided.

Site	Food Source	%C (± SD)	%N (± SD)	C:N
	Epiphytes	$2.43 (\pm 0.002)$	$0.38 (\pm 0.0005)$	7.47
	Spartina	0.38 (± 0.04)	0.01 (± 0.004)	37.52
Knysna Kromme	Sediment	$1.34 (\pm 0.005)$	$0.14 (\pm 0.0004)$	11.15
Knysna	Zostera	37.34 (± 0.01)	$2.93 (\pm 0.005)$	15.20
	Detritus	$1.27 (\pm 0.0009)$	$0.27 (\pm 0.0001)$	5.61
	Microphytobenthos	0.04 (± 0.006)	$0.002 (\pm 0.0002)$	18.82
Kromme	Epiphytes	$0.04 \ (\pm 0.008)$	$0.01 (\pm 0.0006)$	8.95
	Spartina	0.38 (± 0.03)	0.01 (± 0.005)	43.98
	Sediment	$2.67 (\pm 0.01)$	$0.11 (\pm 0.001)$	41.66
	Zostera	36.10 (± 0.02)	2.73 (± 0.004)	15.44
	Detritus	0.01 (± 0.0003)	$0.003 (\pm 0.00002)$	6.11
	Microphytobenthos	$0.04 (\pm 0.007)$	$0.002 (\pm 0.0003)$	19.04
	Epiphytes	$0.05 (\pm 0.007)$	$0.01 \ (\pm \ 0.0008)$	7.52
	Spartina	0.34 (± 0.05)	$0.01 (\pm 0.002)$	39.45
Swanthong	Sediment	2.41 (± 0.004)	$0.18 (\pm 0.001)$	15.92
Swartkops	Zostera	36.37 (± 0.02)	$3.04 (\pm 0.004)$	14.10
	Detritus	$0.01 (\pm 0.0002)$	$0.003 (\pm 0.0002)$	5.12
	Microphytobenthos	$3.85 (\pm 0.003)$	$0.23 (\pm 0.0002)$	19.18

Results (Grazing impact of grapsoid crabs)

Figure S3: The average amount of *Spartina maritima* consumed, in terms of wet weight $(mg/day) (\pm SE) (A)$ and the average length (mm) of *Spartina maritima* consumed per day $(\pm SE) (B)$, by both *Parasesarma catenatum* and *Cyclograpsus punctatus*. Three components of *S. maritima* were tested as sources of food (dead, live, roots and rhizomes).

Table S8: Linear mixed effects model comparing the wet weight consumed per day for different *Spartina maritima* components (dead, live, roots and rhizomes), taking sex and species into account. The model's predictor variables include sex, food source and species, with 'female', 'dead *Spartina*' and '*Cyclograpsus punctatus*' forming the reference categories to which the t-statistic and coefficients (C) are compared. Predictor variables overall are compared using F-statistics. Significant parameters are indicated in bold.

	C±SE	t	F	Р
Sex			4.79	0.03
Male	3.16 (±3.86)	1.16	_	0.42
Source			1.61	0.21
Live Spartina	7.28 (±3.77)	1.93		0.58
Roots & Rhizomes of Spartina	5.11 (±3.59)	1.46	_	0.15
Species			0.12	0.12
Parasesarma catenatum	2.25 (±4.29)	0.92	_	0.36
Carapace Length	0.69 (±0.50)	1.57	_	0.12
Sex: Source			0.14	0.87
Male: Live Spartina	1.39 (±4.69)	0.29	_	0.77
Male: Roots & Rhizomes of	-2.07	-0.38	_	0.70
Spartina	(±4.94)			
Source: Species			1.63	0.20
Live Spartina: Parasesarma	-8.46	-1.78	—	0.08
catenatum	(±4.72)			
Roots & Rhizomes of	-2.87	-0.63		0.53
Spartina: Parasesarma	(±4.89)			
catenatum				
Sex:Species			0.17	0.68
Male: Parasesarma catenatum	1.69 (±4.15)	0.41		0.68

Table S9: Linear mixed effects model comparing the length of *Spartina maritima* components (live, dead, roots and rhizomes) consumed per day, taking sex and species into account. The model's predictor variables include sex, food source and species, with 'female', 'dead *Spartina*' and '*Cyclograpsus punctatus*' forming the reference categories to which the t- statistic and coefficients (C) are compared. Predictor variables overall are compared using F-statistics. Significant parameters are indicated in bold.

	C±SE	t	F	Р
Sex			1.45	0.23
Male	-0.83 (±2.67)	-0.31		0.60
Source			10.87	0.0001
Live Spartina	2.41 (±2.61)	0.92		0.39
Roots & Rhizomes of	7.11 (±2.49)	2.86		< 0.001
Spartina				
Species			8.38	0.005
Parasesarma catenatum	-4.40 (±2.97)	-1.48		0.51
Carapace Length	0.17 (±0.34)	0.49		0.31
Sex: Source			0.28	0.76
Male: Live Spartina	2.92 (±3.25)	0.9		0.39
Male: Roots & Rhizomes of	0.78 (±3.42)	0.23		0.70
Spartina				
Source: Species			0.26	0.77
Live Spartina:	-2.56 (±3.27)	-0.78		0.48
Parasesarma catenatum				
Roots & Rhizomes of	-0.67 (±3.39)	-0.20		0.72
Spartina: Parasesarma				
catenatum				
Sex: Species			2.66	0.11
Male: Parasesarma	4.68 (±3.87)	1.63		0.11
catenatum				

Table S10: Summary of the salt marsh features (elevation, *Spartina maritima* stem density, Spartina maritima stem height, percentage vegetation cover, aboveground biomass), crab community (burrow density as an indicator of crab density, burrow size) and sediment features (SOM (%), moisture content (%), pH, redox potential (mV), % clay, % sand, % silt) at the Kromme Estuary in the months November 2021 to March 2022 (mean \pm SD). SOM (sediment organic matter), for the different treatment types (reduction cage, caged control, uncaged control). The density of gastropods (predominantly *Assiminea* spp.) as other potential grazers is also included.

Treatment Type	Crab reduction		Caged control		Uncaged Control		
	Cage						
Stage of experiment	Start	End	Start	End	Start	End	
Elevation	81.0 ((±6.4)	78.0 ((±6.0)	83.2	83.2 (±9.0)	
Spartina stem density	1028	743	758	676	1019	547	
(n/m^2)	(±228)	(±126)	(±313)	(±116)	(±228)	(±253)	
Spartina stem height	16.8	21.8	17.3	21.8	17.2	22.5	
(cm)	(±2.6)	(±1.8)	(±3.3)	(±3.1)	(±1.2)	(±1.9)	
% Vegetation cover	10 (±5.0)	21	6 (±2.2)	14	10	17 (±2.7)	
		(±13.9)		(±4.1)	(±3.5)		
Aboveground	3436	4330	2092	1731	3280	3823	
Spartina biomass	(±1530)	(±2727)	(±1279)	(±1779)	(±1001)	(±852)	
(g/m^2)							
Burrow density (n/m^2)	317	290	347	395	447	434	
	(±118)	(±107)	(±77)	(±113)	(± 86)	(±57)	
Burrow size (mm)	5.7 (±0.8)	6.46	6.1	7.48	6.4	8.72	
		(±0.9)	(±0.4)	(±1.3)	(±0.8)	(±2.9)	
SOM (%)	3.7 (±0.3)	3.5 (±0.6)	4.1	3.5	3.9	3.7	
			(±0.3)	(±0.7)	(±0.7)	(±0.2)	
Moisture content (%)	8.87	7.65	8.93	7.78	8.69	9.17	
	(±0.9)	(±1.4)	(±0.6)	(±1.0)	(±0.9)	(±0.7)	
pH	6.6	6.3 (±0.7)	6.6	6.2	6.6	6.6	
	(±0.02)		(± 0.01)	(± 0.8)	(± 0.02)	(±0.1)	
Redox potential (mV)	67.4	16.2	66.8	34.2	-5.6	-29.6	
	(±66.0)	(± 140.5)	(±19.2)	(±93.1)	(±74.9)	(±74.8)	
% Clay	18.8	33.9	16.9	35.5	23.5	31.9	
	(±10.3)	(±10.5)	(±6.3)	(± 18.8)	(±7.4)	(±9.4)	
% Sand	7.7 (±3.2)	7.3 (±1.6)	7.7	6.8	9.6	7.4	
			(±4.6)	(± 2.05)	(±5.0)	(±2.9)	
% Silt	73.9	58.8	75.4	57.7	66.9	60.7	
	(±10.01)	(±10.9)	(±8.9)	(± 17.7)	(± 11.8)	(±9.2)	
Gastropod density	$40(\pm 44)$	159	$16(\pm 14)$	151	$56(\pm 55)$	167	
(n/m^2)		(±119)		(± 118)		(±132)	

B) Herbivorous crab density

D) S. maritima aboveground biomass

Figure S4: Percentage change in metrics of herbivorous grapsoid crab burrow sizes (A) and density (B) as well as associated *Spartina maritima* stem density (C) and aboveground biomass (D) over the course of the *S. maritima* growth season at the Kromme Estuary, South Africa, from November 2021 to March 2022. Data are presented as mean \pm SE (n = 5 per treatment). The 'uncaged control' represents open plots (open bars), the 'caged control' represents plots with cages that allowed free movement of crabs (laterally hatched bars), and the 'crab reduction' represents plots with cages that excluded large crabs and reduced overall crab abundance using pitfall traps (diagonally hatched bars). The crab density figure (panel B) is differentiated according to density of burrows per size class (diameter).

Table S11: Linear mixed effects model comparing salt marsh features for the different treatment types (uncaged control, reduction cage, caged control) at the Kromme Estuary where grapsoid crab impact was manipulated from November 2021 to March 2022. Separate models were run for *Spartina maritima* stem density, *Spartina maritima* stem height, percentage vegetation cover, sediment organic matter (SOM), moisture content (%), redox potential (mV) and % silt, with treatment type being the predictor variable. Significant parameters are indicated in bold and those where $0.05 \le P < 0.10$ in italics.

	Treatment	C±SE	F	t	Р
	Overall		0.28		0.764
Dumous dino	caged control vs uncaged control	-0.004 ± 0.006		-0.63	0.546
Bullow size	crab reduction vs uncaged control	0.0002 ± 0.006		0.03	0.978
	caged control vs crab reduction	$\textbf{-0.004} \pm 0.006$		-0.66	0.528
	Overall		4.17		0.058
Spartina Stem	caged control vs uncaged control	0.03 ± 0.07		0.41	0.690
Density	crab reduction vs uncaged control	$\textbf{-0.16} \pm 0.07$		-2.27	0.053
	caged control vs crab reduction	$\textbf{-0.19} \pm 0.07$		-2.68	0.028
	Overall		0.73		0.513
Spartina Stem	caged control vs uncaged control	0.008 ± 0.009		0.86	0.417
Height	crab reduction vs uncaged control	-0.003 ± 0.009		-0.31	0.766
	caged control vs crab reduction	-0.010 ± 0.009		-1.16	0.278
a	Overall		3.47		0.082
Spartina	caged control vs uncaged control	-0.0003 ± 0.014		-0.02	0.984
Aboveground	crab reduction vs uncaged control	-0.033 ± 0.014		-2.29	0.051
DIOIIIASS	caged control vs crab reduction	-0.032 ± 0.014		-2.27	0.053
	Overall		0.97		0.420
% Vegetation	caged control vs uncaged control	$\textbf{-0.04} \pm 0.04$		-1.01	0.343
Cover	crab reduction vs uncaged control	-0.05 ± 0.04		-1.34	0.219
	caged control vs crab reduction	-0.01 ± 0.04		-0.33	0.752
	Overall		0.56		0.591
SOM	caged control vs uncaged control	0.01 ± 0.45		0.02	0.987
SOM	crab reduction vs uncaged control	-0.41 ± 0.45		-0.91	0.390
	caged control vs crab reduction	-0.42 ± 0.45		-0.93	0.381
	Overall		4.80		0.043
Moisture	caged control vs uncaged control	-1.70 ± 0.62		-2.73	0.026
Content (%)	crab reduction vs uncaged control	-1.63 ± 0.62		-2.63	0.030
	caged control vs crab reduction	0.06 ± 0.62		0.10	0.920
	Overall		0.13		0.880
Redox	caged control vs uncaged control	0.004 ± 0.406		0.01	0.992
Potential (mV)	crab reduction vs uncaged control	0.181 ± 0.406		0.45	0.667
	caged control vs crab reduction	0.177 ± 0.406		0.44	0.675
	Overall		0.70		0.524
% Silt	caged control vs uncaged control	-8.87 ± 10.21		-0.87	0.411
/0 5111	crab reduction vs uncaged control	-11.57 ± 10.21		-1.13	0.290
	caged control vs crab reduction	-2.70 ± 10.21		-0.26	0.798