Text S1. Additions to MATERIALS & METHODS

1.1 Data

1.1.1 Fish stomach content data

Exact geographical information on haul positions was missing in several datasets, providing only the ICES rectangle of hauling. Because the affected datasets were all compiled in the context of the ICES North Sea International Bottom Trawl Survey (NS-IBTS) (ICES 2020a), they could be reconstructed, using the haul data publicly accessible via the Database of Trawl Surveys (DATRAS, see ICES 2022). Haul position and stomach data were matched using a combination of haul information recorded in both datasets (Haul ID, ICES Statistical Rectangle, Country, Ship, Day, Date (D-M-Y)) as unique identifier. Predator and prey names in the data were updated to the latest accepted status using the World Register of Marine Species (WoRMS Editorial Board 2022).

1.1.2 Survey data on prey availability in the field

For both IBTS and GSBTS hauls, species abundances were standardized to unit (number of individuals caught) per km² swept area, to allow for comparability with benthos abundance data. The catch data from the fisheries surveys were transformed to swept-area based densities using recorded data on distance, speed over ground, and haul duration, as well as measurements describing the net opening during hauling. Since the latter were not systematically recorded for many of the hauls in question, opening parameters (door spread and wing spread) were estimated in such cases, using vessel-specific regression functions (ICES 2015, 2020b). When calculating swept-area-based abundance, a differentiation was made between species that are typically herded together by the sweeps of the net), and species which are only caught when positioned in the pathway of the opened net itself (for more information on swept-area estimation, see ICES 2021).

Text S2. Additions to RESULTS

The most common and dominant prey types across all predator species were decapods (Decapoda) and sandeels (Ammodytidae), which were found in all Pred/LS and constituted the highest relative biomass in four and six Pred/LS, respectively. For turbot, gadoids (Gadidae, specifically whiting) were a primary food source (56.1%). Both life stages of haddock had large proportions of ophiuroids (Ophiuroidea) in their stomachs (juvenile = 43.2% and adult = 64.6%). Prey items to be excluded prior to trait-based analyses (grey-shaded items in Figure 2), including zooplanktonic organisms, unidentified or imprecisely identified prey, and non-prey items such as rocks, contributed little (< 10%) to the diet composition of eight Pred/LS. Greater sandeel (23.9%) and juvenile haddock (22.8%) had the highest proportions of prey excluded for later analyses, 19.5% and 14.9% of which consisted of planktonic prey, respectively.

Ontogenetic variation between diets occurred in all species for which data on both juvenile and adult life stages were available (whiting, cod, grey gurnard, haddock, plaice), and in all cases, the diets shifted towards higher proportions of fish prey from iuveniles to adults. The diet shifts were strongest for cod and grev gurnard, with the proportions of the initially dominating prey decapods decreasing markedly from juvenile (69.2% and 62.2%) to adult stages (38.1% and 20.9%). They were replaced by flatfishes (Pleuronectidae, 12.3%), other gadoids (12%), and clupeids (Clupeidae, 13%) in adult cod, while grey gurnard diets shifted towards sandeels (35.2%). In the cases of whiting, haddock, and plaice, shifts were less pronounced. Clupeids became a relevant food source of whiting only at the adult stage (20.6%). While adult whiting showed relatively few cases of cannibalism (28 prey items over 1242 stomachs), juvenile whiting fed, to a considerable extent, on its conspecifics (constituting 14.8% of average relative prey biomass and 49 prey items across 283 stomachs). For plaice, the proportion of decapods decreased from juveniles to adults (11.7% to 5%) and that of bivalves (Bivalvia) increased (7.8% to 14.4%), as did that of sandeels (43.9% to 63.4%). Juvenile haddock consumed polychaetes (Polychaeta, 8.6%), which decreased below 5% in adult individuals. Instead, adult haddock consumed more ophiuroids (43.2% to 64.6%).

tooto	Browlow! Source	Doforooo	Tomoral autout	Crotic outout	No.	No ontrioc
Dalasel		Velei elice		opalial exterit	species	
DAPSTOM	Dr. Murray Thompson (Cefas)	Pinnegar 2014	1837 - 2016	North-East Atlantic, partly North-West Atlantic. Arctic Ocean	76	223395
ICES Year of the	Margarethe Nowicki	ICES 1997.	All guarters 1980 -	Whole North Sea	33	201514
Stomach	(Lower Saxony Chamber of Agriculture)	Daan 1989	1991		}	
LIFECO Project	Dr. Jens Floeter (UHH)	Huwer et al. 2014	Spring 2001	Southern North Sea and Skagerrak	<u>+</u>	0609
Tender <i>C. lucerna</i> 2005	Ďr. Jens Floeter (UHH)	Huwer et al. 2014	Summer 2005	Southern North Sea, Box A		58
Tender Boxes 1992-	Dr. Jens Floeter	Huwer et al.	Spring, summer,	North Sea (boxes A, B,	с С	38471
1997	(HHN)	2014	autumn 1992, 1996, 1997	D)		
Tender <i>E. gurnardus</i> 2001-2004	Dr. Jens Floeter (UHH)	Huwer et al. 2014	Spring/summer 2001, 2003, 2004	Southern North Sea	~	320
Tender <i>E. gurnardus</i>	Dr. Jens Floeter	Huwer et al.	Spring, summer	North Sea (incl. boxes	. 	6700
2005-2006	(HHI)	2014	2005, 2006	A, B, C, D, H, K, L, N)		
Tender <i>M. merlangus</i> 2005	Dr. Jens Floeter (UHH)	Huwer et al. 2014	Summer 2005	North Sea (boxes D, F, H, K)		758
Tender <i>E. gurnardus</i> 2013 DE	Dr. Stefan Neuenfeldt (DTU-Aqua)	Huwer et al. 2014	Winter 2013	Central and northern North Sea	~	662
Tender <i>E. gurnardus</i> 2013 NOR	Dr. Stefan Neuenfeldt (DTII-Agua)	Huwer et al. 2014	Winter 2013	Central/ Northern North Sea		579
Hinz et al. 2005	Prof. Dr. Ingrid Kröncke (SaM)	Hinz et al. 2005	Winter, summer 1999. 2000. 2001	Box A	7	919
Schückel et al.	Prof. Dr. Ingrid	Schückel et al.	All quarters 2009,	Box A	4	5563
2011/2012/2013	Kröncke (SaM)	2011, 2012, 2013	2010			
S. maximus 2019-2020	Dr. Matthias	Bernreuther et	Summer 2019,	Southern North Sea	-	129
	Bernreuther	al. in prep.	2020			

Table S1. Summaries of the datasets included in the present study prior to data filtering

TABLES, FIGURES

		, 0
Predator	Length at Maturity	Reference
Grey gurnard (Eutrigla gurnardus)	18 cm	(Muus & Nielsen 1999)
Cod (Gadus morhua)	38 cm	(Froese & Sampang 2013)
Greater sandeel (Hyperoplus lanceolatus)	15 cm	(Vaz et al. 2007)
Common dab (<i>Limanda limanda</i>)	11 cm	(Rijnsdorp et al. 1992)
Haddock (Melanogrammus aeglefinus)	34 cm	(Jennings et al. 1998)
Whiting (Merlangius merlangus)	20 cm	(Jennings et al. 1998)
Plaice (Pleuronectes platessa)	27 cm	(Jennings et al. 1998)
Turbot (Scophthalmus maximus)	28 cm	(Froese & Sampang 2013)

Table S2. Overview of lengths at maturity applied to separate predators by life stage

Table S3. Summary of prey trait distributions in the analysis dataset and the complete dataset (in brackets). Continuous traits were log10-transformed for analysis, thus both untransformed and transformed ranges are provided for reference. Distributions of categorical traits are given in percentages of the total (88 species in the analysis dataset, 244 species in the complete data set)

Continuous	untrar	sformed		log10 (analys	is)
Maximum length	1.5 (0.6	– 140 cm – 140 cm)		0.18 – 2.1	5
Energy density	0.71 – 1 (0.13 – 1	1.45 kJ g _{WM} ⁻¹ 1.45 kJ g _{WM} ⁻¹)		-0.15 – 1.0	06
Categorical					
Body	compressiform	elongated	flat	round	
shape	3% (12%)	67% (61%)	26% (21%)	3% (3%)	
Texture	soft	medium	hard	very hard	
	10% (16%)	42% (30%)	38% (37%)	10% (14%)	
Protection	chemical defence	physical defence	counter attack	escape	hiding
	2% (2%)	11% (7%)	13% (7%)	22% (24%)	52% (55%)
Mobility	immobile	low	medium	high	very high
	1% (3%)	31% (44%)	15% (12%)	39% (28%)	15% (10%)
Habitat	in seafloor	on seafloor	benthopelagic	pelagic	
	19% (29%)	69% (62%)	8% (5%)	2% (2%)	

between table Dray (2013)	es Q and R . For r	nore information	on interpretation	, please see Doléde	c et al. (1996),
Total inertia	a = 2.676				
Eigenvalue	es				
Axis 1	А	xis 2	Axis 3	Axis 4	Axis 5
1.624522	81 0.0	61368	0.32641	0.18769	0.03639
Projected in	nertia (%)				
Axis 1	А	xis 2	Axis 3	Axis 4	Axis 5
57.908	2	1.875	11.635	6.691	1.297
Cumulative	e projected ine	ertia (%)			
Axis 1	Α	xis 2	Axis 3	Axis 4	Axis 5
57.91	7	9.78	91.42	98.11	99.41
Eigenvalue	decompositi	on			
RLQ axis	Eigenvalue	Covariation	Standard dev. R	Standard dev. Q	Correlation
1	1.6245153	1.2745647	1.236803	1.903913	0.5412706
2	0.6136773	0.7833756	1.317832	1.393339	0.4266319
Inertia & co	oinertia R				
RLQ axis	Iner	tia	Max		Ratio
1	1.529	681	2.603646	0.	5875149
1 & 2	3.266	361	4.336182	0.	7532805
Inertia & co	oinertia Q				
RLQ axis	Iner	tia	Мах		Ratio
1	3.624	885	3.963710	0.	9145181
	5.500	278	6.753483	0.	8242085
Correlation	1 L				
RLQ axis	Correl	ation	Мах		Ratio
1	0.5412	2706	1	0.	5412706
IÓLZ	0.426	5519	Ĩ	0.4	4200319

Table S4. Summary table of the RLQ-ordination. Total inertia is the maximum explainable co-variance

Table S5. Summary table of the k-mean clustering outcomes. RLQ1 and RLQ2 give the coordinates of the respective trait along the first and second axis of the RLQ-outcomes, respectively. Pred_Prey indicates whether the trait in column "Trait" refers to predator or prey species

RLQ1	RLQ2	Trait	Pred_Prey	Cluster
-0.554808545	0.211438749	rel.maxillary.jaw.length	Predator	2
-0.090296788	0.173645586	Bertalanffy.growth.coefficient	Predator	2
0.009186275	-0.126799949	energy.density	Predator	2
-0.068389094	0.3572705	protein	Predator	2
-0.782954967	-0.41691153	omega3	Predator	2
0.099744478	-0.646426613	length.max	Predator	3
-0.237286898	0.435589072	AR	Predator	2
-0.278977628	-0.219933527	length.max	Prey	2
-0.426643426	-0.232900179	energy.density	Prey	2
1.149928912	0.08748106	body.compressiform	Prey	1
-0.2375289	0.082441031	body.elongated	Prey	2
0.548589123	-0.272411847	body.flat	Prey	1
0.985961611	0.493964217	body.round	Prey	1
0.087902572	-0.356926553	textu.soft	Prey	2
-0.11337725	0.236083839	textu.medium	Prey	2
0.029282667	-0.557472327	textu.hard	Prey	3
1.053933951	-0.090982556	textu.very.hard	Prey	1
0.143620807	0.437014609	prote.chemical.defence	Prey	2
0.445541876	-0.484694055	prote.physical.defence	Prey	1
0.268089574	-1.364977186	prote.counter.attack	Prey	3
-0.558399808	-0.532190133	prote.escape	Prey	2
0.081776374	0.305073717	prote.hiding	Prey	2
0.626750004	0.932368328	mobil.immobile	Prey	1
0.777318045	0.033195864	mobil.low	Prey	1
-0.643606689	0.414191296	mobil.medium	Prey	3
-0.035095952	-0.921476244	mobil.high	Prey	3
-0.40396104	0.367292087	mobil.very.high	Prey	2
0.862044628	-0.277180115	habit.in.seafloor	Prey	1
0.128211259	-0.138616353	habit.on.seafloor	Prey	2
-0.366189827	0.499291275	habit.benthopelagic	Prey	2
-0.498403894	-1.835829125	habit.pelagic	Prey	3

provided. Where p	references v	vere identified base	d on Chesson's α, supl	oorting studies are listed			
Predator	Life stage	Observed prey	Corresponding to observations in other studies	If applicable: explanation for divergence	References diet observations	Observed preference (significant Chesson's α)	References supporting preference
Greater sandeel (Hyperoplus lanceolatus)	adult	lesser sandeel, copepods	Yes	n.a.	Engelhard et al. 2008, 2013	n.a.	n.a.
Common dab (L <i>imanda</i> <i>limanda</i>)	adult	decapods, bivalves, ophiuroids, polychaetes, fishes	Yes	n.a.	Braber & de Groot 1973, Hinz et al. 2005, Schückel et al. 2012	n.a.	n.a.
Grey gurnard (<i>Eutrigla</i> gurnardus)	adult	sandeels	Yes	n.a.	de Gee & Kikkert 1993, Engelhard et al. 2008, 2013, Weinert et al. 2010	sandeels	de Gee & Kikkert 1993, Engelhard et al. 2008, 2013
	juvenile	decapods, euphausiids	Yes	n.a.	de Gee & Kikkert 1993	n.a.	n.a.
Turbot (Scophthalmus maximus)	adult	gadoids, clupeids, sandeels	No: sandeels expected to constitute large- and clupeids small proportion.	Sandeels only found in one of analysed turbots. Turbot was caught at sites with unsuitable habitat for sandeels but high abundance of clupeids (= opportunistic feeding).	de Groot 1971, Braber & de Groot 1973, Wetsteijn 1981	n.a.	

Table S6. Comparisons of diet compositions identified in this study with diet reports by other authors. Where divergences were identified, explanations are

Predator	Life stage	Observed prey	Corresponding to observations in other studies	If applicable: explanation for divergence	References diet observations	Observed preference (significant Chesson's α)	References supporting preference
Whiting (Merlangius merlangus)	adult	sandeels, clupeids, decapods (<i>Crangon spp.</i>)	Yes	n.a.	Hislop et al. 1991, Pedersen 1999, Temming et al. 2004, Engelhard et al. 2008, Lauerburg et al. 2018, Temming & Hufnagl 2015	sandeels clupeids	Temming et al. 2004, Engelhard et al. 2008 al. 2003
	juvenile	gadoids (other whiting)	Partly: some studies report primarily crustaceans, others fish as food source for juveniles	Juveniles fed mostly on other whiting. Cannibalism among young life stages of whiting is common and possibly related to energetic advantages.	Bromley et al. 1997	n.a.	n.a.
Haddock (Melanogrammus aeglefinus)	adult	echinoderms (ophiuroids), sandeels	Partly: more sandeel than expected	Haddock mainly caught at the Dogger Bank, which is known sandeel habitat. Aggregations of sandeel are preyed upon by haddock.	ICES 1997, Schückel et al. 2010, Temming et al. 2004	ë. L	Э.
	juvenile	benthic invertebrates, mainly ophiuroids	Partly: can vary between mixed fish-invertebrate and exclusively invertebrate- based diet	ла. П	Bromley et al. 1997, Schückel et al. 2010	л. П	л.а.

Predator	Life stage	Observed prey	Corresponding to observations in other studies	If applicable: explanation for divergence	References diet observations	Observed preference (significant	References supporting preference
Cod (Gadus morhua)	adult	mixed diet of invertebrates (decapods) and fish (flatfish, gadoids, clupeids)	Partly: cod typically show dominance of one prey type	Adult cod show intraspecific variation = feeding groups with one prey type dominating: "clupeids", "flatfishes", "other gadoids". Fish prey preferences account for half of diet, crustaceans (decapods) for the other half.	Hüssy et al. 2016	whiting	Hüssy et al. 2016, Daan 1989
	juvenile	benthic invertebrates (decapods)	Yes	n.a.	Daan 1989, Bromley 1997, ICES 1997	л.а.	л.а.
Plaice (Pleuronectes platessa)	adult	sandeels	No: expected diet to be composed of mostly benthic invertebrates (polychaetes, bivalves)	Consumption of sandeels by plaice varies in extend with the availability of sandeels. Previous accounts of contributions to diets varied between < 1% and 15%. Data analysed here originated from the Dogger Bank where sandeels are abundant.	Braber & de Groot 1973, Bromley et al. 1997, Piet et al. 1998, Schückel et al. 2012, Kaiser et al. 2004, Engelhard et al. 2008, 2013	e. E	e. C
	juvenile	sandeels	Same as for adults	Same as for adults	Same as for adults	n.a.	n.a.

Haul positions by source dataset

- DAPSTOM (1991-2020)
- ICES Year of the Stomach (1991)
- Tender Boxen (1992-1997)
- Tender LIFECO (2001)
- Tender E. gurnardus (2001-2004)
- Hinz et al. (2005)
- Tender M. merlangus (2005)
- Tender C. lucerna (2005)
- Tender E. gurnardus (2005-2006)
- Schückel et al. (2011-2013)
- Tender E. gurnardus (2013)
- Thünen S. maximus (2019-2020)

depth < 50m

Fig. S1. Map showing the spatial distribution of all stomach datasets compiled, filtered spatially for the southern North Sea. A few of the datasets depicted here were not included in the analyses, due to lacking important data. This overview, however, may provide any potential future user with the information of which stomach data are theoretically available. "Thünen S. maximus" refers to unpublished data by M. Bernreuther

Fig. S2. Workflow and steps of data cleaning, starting from the individual datasets. Yellow boxes indicate the size of the dataset (schematic and number of rows), the brown arrows indicate exclusion of data, with description of what was removed written inside. Blue arrows give the direction of the cleaning process

Fig. S3. Output of the fourth-corner analysis, testing pairwise Pearson correlations between predator (abscissa) and prey traits (and categories thereof, ordinate). Significant correlations are illustrated by coloured boxes (orange = positive, blue = negative) and the correlation coefficients being printed inside the boxes. White boxes symbolize absence of a correlation between the respective traits

LITERATURE CITED in SUPPLEMENT

- Braber L, de Groot SJ (1973) The food of five flatfish species (Pleuronectiformes) in the southern North Sea. Netherlands J Sea Res 6:163–172.
- Bromley PJ, Watson T, Hislop JRG (1997) Diel feeding patterns and the development of food webs in pelagic 0-group cod (Gadus morhua L.), haddock (Melanogrammus aeglefinus L.), whiting (Merlangius merlangus L.), saithe (Pollachius virens L.), and Norway pout (Trisopterus esmarkii Nilsson) in the northern North Sea. ICES J Mar Sci 54:846–853.
- Daan N (1989) Data Base Report of the Stomach Sampling Project 1981.
- de Gee A, Kikkert AH (1993) Analysis of the grey gurnard (Eutrigia gurnardus) samples collected during the 1991 International Stomach Sampling Project. C.M. 1993/G:14, Demersal Fish Committee, International Council for the Exploration of the Sea, Copenhagen, 25 pp.
- de Groot SJ (1971) On the interrelationships between morphology of the alimentary tract, food and feeding behaviour in flatfishes (Pisces: Pleuronectiformes). Netherlands J Sea Res 5:121–196.
- Dolédec S, Chessel D, ter Braak CJF, Champely S (1996) Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3:143–166.
- Dray S (2013) A Tutorial to Perform Fourth-Corner and RLQ Analyses in R.
- Engelhard GH, Van Der Kooij J, Bell ED, Pinnegar JK, Blanchard JL, Mackinson S, Righton DA (2008) Fishing mortality versus natural predation on diurnally migrating sandeels Ammodytes marinus. Mar Ecol Prog Ser 369:213–227.
- Engelhard GH, Blanchard JL, Pinnegar JK, van der Kooij J, Bell ED, Mackinson S, Righton DA (2013) Body condition of predatory fishes linked to the availability of sandeels. Mar Biol 160:299–308.
- Froese R, Sampang A (2013) Potential Indicators and Reference Points for Good Environmental Status of Commercially Exploited Marine Fishes and Invertebrates in the German EEZ.
- Hinz H, Kröncke I, Ehrich S (2005) The feeding strategy of dab Limanda limanda in the southern North Sea: linking stomach contents to prey availability in the environment. J Fish Biol 67:125–145.
- Hislop JRG, Robb AP, Bell MA, Armstrong DW (1991) The diet and food consumption of whiting (Merlangius merlangus) in the North Sea. ICES J Mar Sci 48:139–156.
- Hüssy K, Andersen NG, Pedersen EM (2016) The influence of feeding behaviour on growth of Atlantic cod (Gadus morhua, Linnaeus, 1758) in the North Sea. J Appl Ichthyol 32:928–937.
- ICES (1997) Database report of the stomach sampling project 1991. ICES Cooperative Research Report No. 219, International Council for the Exploration of the Sea, Copenhagen, 422 pp.
- ICES (2015) Report of the International Bottom Trawl Survey Working Group (IBTSWG), 23-27 March 2015, Bergen, Norway. ICES CM 2015/SSGIEOM:24. 278 pp.
- ICES (2020a) Manual for the North Sea International Bottom Trawl Surveys. Series of ICES survey protocols SISP 10-IBTS 10, Revision 11, International Council for the Exploration of the Sea, Copenhagen, 102 pp.
- ICES (2020b) NS-IBTS swept area calculation algorithms. DATRAS Procedure Document. ICES Data Centre.
- ICES (2021) Workshop on the production of swept-area estimates for all hauls in DATRAS for biodiversity assessments (WKSAE-DATRAS). ICES Scientific Reports. 3:74. 77 pp. https://doi.org/10.17895/ices.pub.8232.
- ICES (2022) ICES database on trawl surveys (DATRAS), International Council for the Exploration of the Sea, Copenhagen. https://datras.ices.dk (last accessed on 15 Feb 2022)
- Jennings S, Reynolds JD, Mills SC (1998) Life history correlates of responses to fisheries exploitation. Proc R Soc B Biol Sci 265:333–339.

- Kaiser MJ, Bergmann M, Hinz H, Galanidi M, Shucksmith R, Rees EIS, Darbyshire T, Ramsay K (2004) Demersal fish and epifauna associated with sandbank habitats. Estuar Coast Shelf Sci 60:445–456.
- Lauerburg RAM, Temming A, Pinnegar JK, Kotterba P, Sell AF, Kempf A, Floeter J (2018) Forage fish control population dynamics of North Sea whiting Merlangius merlangus. Mar Ecol Prog Ser 594:213–230.
- Muus BJ, Nielsen JG (1999) Sea fish, Scandinavi. Hedehusene, Denmark.
- Pedersen J (1999) Diet comparison between pelagic and demersal whiting in the North Sea. J Fish Biol 55:1096–1113.
- Piet GJ, Pfisterer AB, Rijnsdorp AD (1998) On factors structuring the flatfish assemblage in the southern North Sea. J Sea Res 40:143–152.
- Pinnegar JK, Trenkel VM, Tidd AN, Dawson WA, Du Buit MH (2003) Does diet in Celtic Sea fishes reflect prey availability? J Fish Biol 63:197–212.
- Rijnsdorp AD, Vethaak AD, Van Leeuwen PI (1992) Population biology of dab Limanda limanda in the southeastern North Sea. Mar Ecol Prog Ser 91:19–35.
- Schückel S, Ehrich S, Kröncke I, Reiss H (2010) Linking prey composition of haddock Melanogrammus aeglefinus to benthic prey availability in three different areas of the northern North Sea. J Fish Biol 77:98–118.
- Schückel S, Sell AF, Kröncke I, Reiss H (2012) Diet overlap among flatfish species in the southern North Sea. J Fish Biol 80:2571–2594.
- Temming A, Götz S, Mergardt N, Ehrich S (2004) Predation of whiting and haddock on sandeel: aggregative response, competition and diel periodicity. J Fish Biol 64:1351–1372.
- Temming A, Hufnagl M (2015) Decreasing predation levels and increasing landings challenge the paradigm of non-management of North Sea brown shrimp (Crangon crangon). ICES J Mar Sci 72:804–823.
- Vaz S, Carpentier A, Coppin F (2007) Eastern English Channel fish assemblages: Measuring the structuring effect of habitats on distinct sub-communities. ICES J Mar Sci 64:271–287.
- Weinert M, Floeter J, Kröncke I, Sell AF (2010) The role of prey composition for the condition of grey gurnard (Eutrigia gurnardus). J Appl Ichthyol 26:75–84.
- Wetsteijn B (1981) Feeding of North Sea turbot and brill. CM1981/G:74, Demersal Fish Committee, International Council for the Exploration of the Sea, Copenhagen, 19 pp.
- WoRMS Editorial Board (2022) World Register of Marine Species. https://www.marinespecies.org (last accessed on 4 Nov 2022)