Supplement 1. Model notation and equations

Table S1.1. Notation for Grey Seal/Cod/Herring model. * indicates parameters that were directly estimated, ** indicates model arrays for which some subset of values were directly estimated, *** indicates parameters that were conditionally estimated, and **** indicates parameters that were post-fitted (i.e., fitted to model estimates) for use in projections.

Symbol	Description	Value
Indices		
i, j	Species ($i = prey, j = predator$)	1=Grey Seal, 2=Cod,
		3=Herring
х, у	Subpopulation ($x = prey, y = predator$)	
<i>a</i> , <i>b</i>	Age (yr) ($a = prey, b = predator$)	$a_i^{(R)}$, $a_i^{(R)}$ +1,, A_i -1,
		A _i
t	Year	1,2,,48
g	Survey index	Table 1
Data and inj	puts	
$a_i^{(R)}$	Age-at-recruitment for species <i>i</i> (yr)	1,2,2
A_i	Maximum age-class for species <i>i</i> (yr)	30,12,11
$I_{g,i,t}$	Abundance or biomass index	
$u_{g,i,x,a,t}^{(\mathrm{F})}$	Fishery/survey age-composition $(i \ge 2)$	
$u_{j,a,t}^{(\mathrm{P})}$	Age-composition of Herring in predator diet $(j \le 2)$	
$C_{i,v,b,i,t}^{(P)}$	Bioenergetic-derived prey consumption by predator jy at	
	age b of prey species i at age a (kt)	
$C_{x,t}^{(\mathrm{pup})}$	Age-0 Grey Seal removals (1000s)	
$C_{x,t}^{(1+)}$	Age-1+ Grey Seal removals (1000s)	
$C_{i,x,t}^{(\mathrm{F})}$	Observed commercial fishery catch $(i \ge 2)$	
$p_{x,t}^{(\mathrm{ice})}$	Proportion of Grey Seals born on pack-ice	
$s_{x,t}^{(ice)}$	Survival rate of Grey Seals born on pack-ice	

$f_{j,y}$	Proportion of time predator j in subpopulation y spends	$f_{j=1,y=1} = 0.024$
	foraging near prey	$f_{j=1,y=2} = 0.038$
		$f_{j=1,y=3} = 0.729$
		$f_{j=1,y=4} = 0.493$
		$f_{j=2,y=1} = 1$
m _{i,a,t}	Proportion mature-at-age	
$w_{i,x,a,t}^{(S)}$	Fish weight at start of year (kt)	
$W_{g,i,x,a,t}^{(F)}$	Average weight-at-age of prey ix caught by gear g (kt) (i	
577777	≥2)	
$d_{g,i,x}$	Survey date (expressed as Julian date / 365)	
$p_{x,a}^{(\mathrm{init})}$	Initial proportion of Grey Seals by age and	
,	sex/subpopulation	
$\gamma_{a,t}^{(n)}$	Number of seals sampled for reproductive status	
$\gamma_{a,t}^{(k)}$	Observed number of pregnant seals	
$\zeta_{i,x}$	Spawn timing (expressed as Julian date / 365)	$\zeta_{j=2,y=1} = 0.37$
		$\zeta_{j=3,y=1} = 0.25$

$$\zeta_{j=3,y=1} = 0.25$$

$$\zeta_{j=3,y=2} = 0.58$$

$$\zeta_{j=3,y=3} = 0.58$$

$$\zeta_{j=3,y=4} = 0.58$$

Parameters

$N_x^{(\text{init})}$	Initial Grey Seal abundance ('000s)	*
$D_{x,1}, D_{x,2}$	Seal juvenile density dependence half-saturation and	*
	shape	
$ar{\gamma}$	Mature female seal reproductive rate	*
a ^(50%) , a ^(95%)	Female seal age-at-50% and 95% maturity	*
\bar{R}_x	Initial equilibrium Herring recruitment (millions)	*
$\varepsilon_{i,x,t}^{(\mathrm{R})}$	Recruitment process errors $(i \ge 2)$	*
$M_{i,x,a,t}$	Instantaneous natural mortality rate (yr ⁻¹)	**

$\varepsilon_t^{(\mathrm{M,c})}$	Cod other natural mortality process errors $(t > 1)$	*
$\varepsilon_t^{(\mathrm{M,h1})}$	Herring other natural mortality process errors, ages 2-6 (t	*
C	> 1)	
$\varepsilon_t^{(\mathrm{M,h2})}$	Herring other natural mortality process errors, ages 7-11+	*
	(t > 1)	
$\varphi_{j,y,i,t}$	Per-capita capacity of predator <i>jy</i> to prey on species $i \ (i \ge i)$	**
	2, <i>j</i> < 3)	
$arepsilon_{j,i,t}^{(\phi)}$	Predation capacity process errors $(t > 1)$	*
$s_{g,i,x,t}^{50\%}, s_{g,i,x,t}^{95\%}$	Age-at-50% and 95% selectivity for fishing gear g ($i \ge 2$)	*
$ ho_{j,y}^{50\%}$, $ ho_{j,y}^{95\%}$	Age at which prey consumption by predator jy is 50%	*
	and 95% of its maximum consumption levels	
$k_j, heta_j$	Shape and scale parameters for predator selectivity of	*
	Herring	
$q_{g,i,x,t}$	Catchability of species ix to gear g ($i \ge 2, g > 1$)	*
$\varepsilon^{(\mathrm{q})}_{g,i,x,t}$	Catchability process errors $(t > 1)$	*
$ au_{g,i,t}^{(l)}$	Abundance or biomass index variance	** (see Table 3)
$ au_{g,i,\mathrm{x}}^{(u)}$	Fishery/survey age-composition variance	**
$ au_{j,t}^{(P)}$	Age-composition of herring in predator diet variance	**
$F_{x,t}^{(1+)}$	Grey seal exploitation rate (yr ⁻¹)	***
$F_{i,x,t}$	Fully-selected fishery exploitation rate (yr ⁻¹ ; $i > 1$)	***
$\eta_{j,y,i}$	Encounter rate between predator <i>jy</i> and prey <i>i</i>	****
$h_{j,y,i}$	Time predator jy spends consuming prey i	****
$\beta_0, \beta_C, \beta_H$	Parameters for fecundity, density-dependence and	****
	Herring effect in Ricker stock-recruitment function for	
	Cod	
$\Psi_{1,x}, \Psi_{2,x}$	Fecundity and density-dependence parameters of Herring	****
	stock-recruitment function in projections	

State variables

$N_{i,x,a,t}$	Abundance (thousands for Grey Seals, millions for Cod	**
	and Herring)	
$Z_{i,x,a,t}$	Instantaneous total mortality rate (yr ⁻¹)	
$M_{i,a,t}^{(P)}$	Instantaneous predation mortality rate (yr ⁻¹)	
$m_{j,y,b,i,a,t}^{(P)}$	Fully-selected instantaneous predation mortality imposed	
	on prey <i>i</i> by predator jy at age b (yr ⁻¹)	
$M_{i,x,a,t}^{(O)}$	Other (non-predation) natural mortality rate (yr ⁻¹)	
$S_{j,i,a}^{(P)}$	Selectivity of species <i>i</i> at age <i>a</i> by predator <i>j</i>	
$S_{g,i,x,a,t}^{(\mathrm{F})}$	Selectivity of prey <i>ix</i> at age <i>a</i> to fishing gear <i>g</i>	
$B_{i,x,t}^{(\mathrm{S})}$	Spawner biomass $(i \ge 2)$	
$B_{j,i,x,a,t}^{(\mathrm{P})}$	Biomass of prey <i>ix</i> at age <i>a</i> available to predator j ($i \ge 2, j$	
	< 3)	
$V_{g,i,x,a,t}$	Number of fish vulnerable to fishing gear g (millions)	
$G_{x,t}$	Grey Seal pup production (thousands)	
$G_{x,t}^*$	Grey Seal post-weaning pup abundance (thousands)	
$D_{x,t}$	Density-dependent Grey Seal pup survival rate	
$E_{y,t}$	Grey seal foraging effort in the sGSL (seal-yrs)	
$ ho_{j,y,b}$	Relative prey consumption by predator jy at age b	
$\hat{c}_{i,v,h,i,x,a,t}^{(N)}$	Per-capita catch by predator jy at age b of prey ix at age a	
<u>, , , , , , , , , , , , , , , , , , , </u>	(millions)	
Ĉ _{j,y,b,i,a,t}	Per-capita catch by predator jy at age b of prey i at age a	
	(kt)	
m _{i,a,t}	Proportion mature-at-age for species i in year t	
Υa,t	Grey Seal reproductive rate-at-age in year t	
$S_{x,a=1}^{(\text{init})}$	Initial Herring survivorship	
$\hat{I}_{g,i,t}$	Predicted abundance/biomass index	
$\hat{u}_{g,i,x,a,t}^{(\mathrm{F})}$	Predicted fishery/survey age-composition	

 $\hat{u}_{j,a,t}^{(P)}$ Predicted age-composition of Herring consumed by predator j

Equation	Formula
Grey seal demographic rates	
(S1) Proportion of females	$m_{i=1,a,t} = 0$
mature-at-age, $i = 1, a < 4$	
(S2) Proportion of females	$\left(1 - \ln(19)\left(a - a^{(50\%)}\right)\right)^{-1}$
mature-at-age, $i = 1, 4 \le a \le 11$	$m_{i=1,a,t} = \left(1 + \exp\left[\frac{a^{(95\%)} - a^{(50\%)}}{a^{(95\%)} - a^{(50\%)}}\right]\right)$
(S3) Proportion of females	$m_{i=1,a,t} = 1$
mature-at-age, $i = 1, a \ge 12$	
(S4) Annual reproductive rate-at-	$\gamma_{a,t} = \bar{\gamma} m_{i=1,a,t}$
age	
Selectivity	
(S5) Fishery and survey	(F) $(1 - \ln(19) (a - s_{g,i,x,t}^{50\%}))^{-1}$
selectivity $(i > 1)$	$S_{g,i,x,a,t} = \left(1 + \exp\left[\frac{s_{g,i,x,t}^{95\%} - s_{g,i,x,t}^{50\%}}{s_{g,i,x,t}^{95\%} - s_{g,i,x,t}^{50\%}}\right]\right)$
(S6) Seal selectivity of cod	$S_{j=1,i=2,a}^{(P)} = \begin{cases} 0, & a \le 4\\ 1, & a \ge 5 \end{cases}$
(S7) Herring selectivity by seal	$S_{j=1,i=3,a}^{(P)} = \left(1 + \exp\left[\frac{-\ln(19)\left(a - b^{50\%}\right)}{b^{95\%} - b^{50\%}}\right]\right)^{-1}$
(S8) Herring selectivity by cod	$S_{j=2,i=3,a}^{(\mathrm{P})} \propto \frac{1}{\Gamma(k)\theta^k} \theta^{k-1} \exp\left(-\frac{a}{\theta}\right)$
Prey consumption	
(S9) Relative prey consumption- at-age $(i \le 2)$	$\rho_{j,y,b} = \left(1 + \exp\left[\frac{-\ln(19)\left(b - \rho_{j,y}^{50\%}\right)}{\rho_{j,y}^{95\%} - \rho_{j,y}^{50\%}}\right]\right)^{-1}$
(S10) Per-capita predation	$\varphi_{i,y,i,t} = \varphi_{i,y,i,t-1} \exp\left(\varepsilon_{i,i,t}^{(\varphi)}\right)$
capacity (Historical) ($t > 2; j \le 2; i$	
> j)	
(S11) Per-capita predation	$\eta_{j,y,i}(\sum_{x} B_{i,x,t})^{\lambda_{j,y,i}-1}$
capacity (Projection) ($t > 2; j \le 2;$	$\varphi_{j,y,i,t} = \frac{1}{1 + \sum_{l} \left(\eta_{j,y,l} h_{i,y,l} \left(\sum_{x} B_{l,x,t} \right)^{\lambda_{j,y,l}} \right)}$
i > j)	
Mortality rates	

Table S1.2. Population dynamics equations for Grey Seal/Cod/Herring model.

 $F_{i,x,a,t} = F_{x,t}^{(1+)}$ (S12) Seal exploitation $m_{i,v,b,i,a,t}^{(P)} = S_{j,i,a}^{(P)} f_{j,y} \varphi_{j,y,i,t} \rho_{j,y,b}$ (S13) Predation mortality per predator $M_{i,a,t}^{(P)} = \sum_{i} \sum_{y} \sum_{h} N_{j,y,b,t} m_{j,y,b,i,a,t}^{(P)}$ (S14) Total predation mortality $M_{i=2,x=1,a,t}^{(O)} = M_{2,1,a,t-1}^{(O)} \exp\left(\varepsilon_t^{(M,c)}\right)$ (S15) Other natural mortality ($t \ge$ 2, i = 2) $M_{i=3,x,a,t}^{(0)} = M_{3,x,a,t-1}^{(0)} \exp\left(\varepsilon_t^{(M,h1)}\right)$ (S16) Other natural mortality ($t \ge$ 2, $i = 3, a \le 7$) $M_{i=3,x,a,t}^{(0)} = M_{3,x,a,t-1}^{(0)} \exp\left(\varepsilon_t^{(M,h2)}\right)$ (S17) Other natural mortality ($t \ge$ 2, $i = 3, a \ge 8$) $Z_{i,x,a,t} = S_{a=1,i,x,a,t}^{(F)} F_{i,x,t} + M_{i,a,t}^{(P)} + M_{i,x,a,t}^{(O)}$ (S18) Total mortality rate Initial abundance $N_{i=1,x,a,t=1} = N_x^{(\text{init})} p_{x.a}^{(\text{init})}$ (S19) Initial grey seal abundance (S20) Herring survivorship, (a=1) $s_{r,a-1}^{(\text{init})} = 1$ (S21) Herring survivorship, $s_{x,a}^{(\text{init})} = s_{x,a-1}^{(\text{init})} \exp\left(-M_{3,x,a-1,1} - S_{1,3,x,a-1,1}^{(\text{F})}F_{3,x,1}\right)$ (a<11) (S22) Herring survivorship, $s_{x,a}^{(\text{init})} = \frac{s_{x,a-1}^{(\text{init})} \exp\left(-M_{3,x,a-1,1} - S_{1,3,x,a-1,1}^{(F)}F_{3,x,1}\right)}{\left(1 - \exp\left(-M_{3,x,a,1} - S_{1,2,x,a,1}^{(F)}F_{3,x,1}\right)\right)}$ (a=11) $N_{i=3,x,a,t=1} = \bar{R}_x s_{x,a}^{(\text{init})}$ (S23) Herring abundance State dynamics $G_{x,t} = 0.5 \sum_{\alpha} N_{1,2,a,t} \gamma_{a,t}$ (S24) Shelf seal pup production $(x \in \{1,2\})$ (S25) Gulf seal pup production $G_{x,t} = 0.5 \sum_{a} N_{1,4,a,t} \gamma_{a,t}$ $(x \in \{3,4\})$ $G_{x,t}^* = 0.95 \left(G_{x,t} p_{x,t}^{(\text{ice})} s_{x,t}^{(\text{ice})} + G_{x,t} \left[1 - p_{x,t}^{(\text{ice})} \right] \right)$ (S26) Post-weaning pup abundance

$$Y_{x,t} = \left(G_{x,t}^* - C_{x,t}^{(\text{pup})}\right)$$

(S27) Post-harvest pup abundance

$$\begin{aligned} & (S28) \text{ Shelf seal recruitment} \\ & (x=\{1,2\}, a=1, t\geq 2) \\ & N_{1,x,1,t}=0.9Y_{x,t-1}\left(\frac{D_{x,1}^{D_{x,2}}+\left[\sum_{a=1}^{2}Y_{x,t-1}\right]^{D_{x,2}}\right) \\ & (S29) \text{ Gulf seal recruitment} \\ & (x=\{3,4\}, a=1, t\geq 2) \\ & N_{1,x,1,t}=0.9Y_{x,t-1}\left(\frac{D_{x,1}^{D_{x,2}}+\left[\sum_{a=1}^{2}Y_{x,t-1}\right]^{D_{x,2}}\right) \\ & (S30) \text{ Age 1+ Shelf seal removals} \\ & C_{t}^{(1+,S)}=\sum_{a=1}^{2}\sum_{a}\frac{F_{x,t}^{(1+)}}{a_{1,x,a,t}}N_{1,x,a,t}(1-\exp(-Z_{1,x,a,t})) \\ & (S31) \text{ Age 1+ Gulf scal removals} \\ & C_{t}^{(1+,G)}=\sum_{a=3}^{4}\sum_{a}\frac{F_{x,t}^{(1+)}}{a_{1,x,a,t}}N_{1,x,a,t}(1-\exp(-Z_{1,x,a,t})) \\ & (S32) \text{ Codherring recruitment} \\ & N_{i,x,2,t}=N_{i,x,2,t-1}\exp(\varepsilon_{i,x,t}^{(R)}) \\ & (Historical) (t\geq 2; t\geq 2) \\ & (S33) \text{ Codherring recruitment} \\ & (Projection) (i=2) \\ & (S34) \text{ Recruitment (Projection) (i) } \\ & N_{i,x,2,t}=\theta_{0}B_{2,1,t-2}\exp\left(-\beta_{c}B_{2,1,t-2}-\beta_{H}\sum_{x}B_{3,x,t-2}\right) \\ & = 3) \\ & (S35) \text{ Abundance, } a_{t}^{(R)} < a < A_{t} \\ & N_{i,x,2,t}=W_{x,1}B_{3,x,t-2}/(1+\Psi_{x,2}B_{3,x,t-2}) \\ & = 3) \\ & (S35) \text{ Abundance, } a_{t}^{(R)} < a < A_{t} \\ & N_{i,x,2,t}=\sum_{a}N_{i,x,a,t}m_{i,a,t}W_{i,a,t}^{(S)} \\ & (-\zeta_{i,x}Z_{i,x,a,t}) \\ & (i\geq 2) \\ & (S33) \text{ Spawner biomass at time of } \\ & B_{i,x,t}=\sum_{a}N_{i,x,a,t}m_{i,a,t}W_{i,a,t}^{(S)} \\ & (-\zeta_{i,x}Z_{i,x,a,t}) \\ & (S39) \text{ Per-capita prey} \\ & (S39) \text{ Per-capita prey} \\ & (S40) \text{ Per-capita prey} \\ & (S41) \text{ Abundance vulnerable to} \\ & V_{g,i,x,a,t}=N_{i,x,a,t}S_{g,i,x,a,t}^{(P)} \\ & (S41) \text{ Abundance vulnerable to} \\ & V_{g,i,x,a,t}=\sum_{a}\frac{F_{i,x,t}}{V_{i,x,a,t}}V_{i,i,x,a,t}(1-\exp(-Z_{i,x,a,t})) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery catch } (i\geq 2) \\ & (S42) \text{ Fishery$$

Predicted observations

(S43) Shelf seal pup production indices

(S44) Gulf seal pup production

indices

(S45) Biomass indices ($i \ge 2, g >$

1)

(S46) Fishery/survey age-

composition ($i \ge 2$)

(S47) Age-composition of herring

in predator diet

$$\hat{I}_{g=1,i=1,t} = \sum_{x=1}^{2} G_{x,t}^{*}$$

$$\hat{I}_{g=2,i=1,t} = \sum_{x=3}^{4} G_{x,t}^{*}$$

$$\hat{I}_{g,i,t} = q_{g,i,x,t} \sum_{a} V_{g,i,x,a,t} w_{g,i,x,a,t}^{(F)}$$

$$\hat{u}_{g,i,x,a,t}^{(F)} = \frac{V_{g,i,x,a,t}}{\sum_{a} V_{g,i,x,a,t}}$$

$$\hat{u}_{j,a,t}^{(P)} = \frac{\sum_{y} \sum_{b} \sum_{x} \hat{c}_{j,y,b,i=3,x,a,t}^{(N)} N_{j,y,b,t}}{\sum_{a} \sum_{y} \sum_{b} \sum_{x} \hat{c}_{j,y,b,i=3,x,a,t}^{(N)} N_{j,y,b,t}}$$

Table S1.3. Objective function components for Grey Seal/Cod/Herring model.

Model variable Distribution

Likelihood

Abundance or biomass indices

$$\ln I_{g,i,t} \sim N \left(\ln \hat{I}_{g,i,t} , \tau_{g,i,t}^{(I)} \right)$$

Notes

- $\tau^{(l)}$ for grey seals was fixed at herd- and year-specific values

- $\tau^{(l)}$ for cod was conditionally estimated by gear

- $\tau^{(l)}$ for herring was fixed at 0.1 for CPUE indices and 0.2 for all other indices

(*t*)) $-\tau^{(u)}$ was conditionally estimated $-a_{g,i}^{(\min)}$ and $a_{g,i}^{(\max)}$ are the minimum and maximum ages respectively of sampled fish

 $-P(N(u, \tau))$ is the logistic-normal distribution

- $\tau^{(P)}$ was conditionally estimated

-For i < j

Fishery/survey age-composition $\left\{ u_{g,i,x,a,t}^{(F)} \right\}_{a=a_{g,i}^{(max)}}^{a_{g,i}^{(max)}} \sim P\left(N\left(\hat{u}_{g,i,x,a,t}^{(F)}, \tau_{g,i,x}^{(u)}\right) \right)$

Age-composition of herring in predator diets

 $\ln \sum_{a} c_{j=1,y,b,i,a,t} \sim N(\ln \hat{c}_{j=1,y,b,i,t}, 1)$ $\ln \sum_{a} c_{j=2,y,b,i,a,t} \sim N(\ln \hat{c}_{j=2,y,b,i,t}, 0.1^{2})$ $\gamma_{a,t}^{(k)} \sim B(\gamma_{a,t}^{(n)}, \gamma_{a,t})$

 $\left\{u_{j,a,t}^{(\mathsf{P})}\right\}_{a=a_{i-2}^{(\mathsf{R})}}^{A_{i=3}} \sim P\left(N\left(\hat{u}_{j,a}^{(\mathsf{P})},\tau_{j,t}^{(\mathsf{P})}\right)\right)$

Grey seal pregnancy rates

Per-capita

consumption

Priors

Recruitment deviations	$\varepsilon_{i,x,t}^{(\mathrm{R})} \sim N(0,1)$	-High variance to account for potentially large interannual changes in recruitment
Consumption deviations	$\varepsilon_{j=1,i,t}^{(\phi)} \sim N(0,0.25^2)$ $\varepsilon_{j=2,i,t}^{(\phi)} \sim N(0,0.05^2)$	-Variance chosen to allow for large decadal-scale shifts in consumption while preventing excessive interannual variation. Seal (<i>j</i> =1) was less prone to chasing noise so higher variance was allowed.
Catchability deviations	$\varepsilon_{x,t}^{(q)} \sim N(0, 0.05^2)$	- $\varepsilon_{x,t}^{(q)}$ was estimated between 1991-2018 for Spring (x=1) herring and between 1987-2018 for Fall (x>1) herring to match herring assessment (DFO 2018) -Variance chosen to match herring assessment (DFO 2018)
Cod other natural mortality deviations	$\varepsilon_t^{(\mathrm{M,c})} \sim N(0,0.05^2)$	$-\varepsilon_t^{(M)}$ was fixed at 0 until 1978 and was estimated thereafter
Herring other natural mortality deviations	$\varepsilon_t^{(M,h1)} \sim N(0,0.05^2)$ $\varepsilon_t^{(M,h2)} \sim N(0,0.05^2)$	
Herring selectivity	$s_{g,i=3,x,t}^{50\%} \sim N(5,3^2)$ $\left(s_{g,i=3,x,t}^{95\%} - s_{g,i=3,x,t}^{50\%}\right) \sim N(1.5,2^2)$	-Applied to all uniquely estimated Herring selectivity parameters

Herring pre-1978	$q_{g=3,i=3,x,t} \sim N(1,1)$
biomass index	
catchability	
Grey seal initial abundance	$N_h^{(\text{init})} \sim N(5,5^2)$
Grey seal density	$D_{h=1,1} \sim N(25,25^2)$
dependence	$D_{h=2,2} \sim N(5,10^2)$
	$D_{h,2} \sim N(1,3^2)$
Grey seal female	$a^{(50\%)} \sim N(5,4^2)$
age-at-maturity	$(a^{(95\%)} - a^{(50\%)}) \sim N(2,2^2)$

Supplement 2. Estimating Grey Seal and Atlantic Cod prey consumption-at-age from bioenergetics

We used bioenergetic models to estimate age-specific, per-capita prey consumption by Northwest Atlantic Grey Seals (hereafter "seals") and southern Gulf of St. Lawrence (sGSL) Atlantic Cod (hereafter "cod"). We estimated seal consumption of cod and sGSL Atlantic Herring (hereafter "herring"), and cod consumption of herring, based on total consumption estimates, the spatiotemporal overlap between predator and prey species, and the proportional contribution of prey to predator diets.

Grey seals

Benoît et al. (2011a) estimated the daily gross energy intake (GEI) of individual seals based on a number of factors, including body mass, metabolism, assimilation efficiency and age-specific growth premiums. We converted daily GEI to monthly GEI, then divided by the average energy of prey (Trzcinski et al. 2006) to estimate the amount of biomass needed to maintain growth (Figure S2.1).

The proportion of each month seals spend foraging near cod and herring was estimated from the movements of satellite-tracked seals (Breed et al. 2006, Harvey et al. 2008, Benoît and Rail 2016). Cod and herring were assumed to occupy the same areas each month (specifically, the sGSL year-round, plus NAFO Subdivision 4Vn from November to April).

The relative contribution of prey to the seal diet is highly uncertain due to spatiotemporal gaps in diet sampling as well heterogeneities in foraging behaviour across seasons, areas and individuals. The seal diet has previously been inferred from prey hard parts found in the digestive tracts of grey seals collected (i) in coastal areas of the sGSL between late spring and August (Hammill et al. 2007), (ii) from the west coast of Cape Breton Island between September and January, and (iii) in the Cabot Strait near St Paul Island, mostly between October and December (Hammill et al. 2014). Seals were sampled on or near shore and the inferred diets likely reflect feeding that occurred near (~30 km) the sampling site (Benoît et al. 2011b). We assume that the observed inshore diet also reflects the offshore diet, given the considerable spatial overlap among these species (Benoît and Rail 2016).

For seal consumption of herring, we assumed that the Cape Breton samples represented the fall (Sept-Nov) seal diet, the Cabot Strait samples represented the winter seal diet (Dec-Mar), and the sGSL samples represented the seal diet from April to August (Figure S2.2). For seal consumption of cod, the Cabot Strait samples represented the seal diet while cod are migrating and overwintering (Oct-May) while the sGSL samples represented the summer (June-Sept) seal diet. The winter Cabot Strait samples were assumed to represent feeding on migrating cod, given that migrating cod occur at densities similar to that on the overwintering ground. This is reflected by the intense fisheries that used to target these migrating fish.

Seal consumption of individual prey species was calculated as the product of total prey consumption, monthly foraging behaviour, and diet composition, each of which were assumed to be year-invariant. Gulf herd seals consumed significantly more prey in the sGSL than Shelf herd seals (Figure S2.3).

Atlantic Cod

Benoît and Rail (2016) estimated monthly, size-specific prey consumption by cod $(C_{l,m})$ from mean stomach content mass and gastric evacuation rates. We converted size-specific consumption to age-specific consumption using an age-length key and diet composition estimates, i.e.,

$$c_{a,t,m} = \sum_{l} p_{a,l,t} C_{l,m} d_{l,t} \quad (1)$$

where $c_{a,t,m}$ is the per-capita consumption-at-age for cod, $p_{a,l,t}$ is the proportion of age-*a* cod at length *l* in year *t* and $d_{l,t}$ is the proportional contribution of herring to the of length-*l* cod diet. Monthly consumption rates were converted to annual rates, accounting for mortality each month (Figure S2.4), i.e.,

$$c_{a,t} = \sum_{m} c_{a,t,m} \exp\left(-Z_{a,m} \frac{m}{12}\right) \quad (2)$$

where $Z_{a,m}$ is the annual instantaneous cod mortality rate (Swain et al. 2015).

References

Benoît HP, Hammill MO, Swain DP (2011a) Estimated consumption of southern Gulf of St.
 Lawrence cod by grey seals: bias, uncertainty and two proposed approaches. DFO Can Sci
 Advis Sec Res Doc 2011/041. Fisheries and Oceans Canada, Ottawa

- Benoît HP, Rail JF, (2016) Principal predators and consumption of juvenile and adult Atlantic Herring (*Clupea harengus*) in the southern Gulf of St. Lawrence. DFO Can Sci Advis Sec Res Doc 2016/065. Fisheries and Oceans Canada, Ottawa
- Benoît HP, Swain DP, Bowen WD, Breed GA, Hammill MO, Harvey V (2011b) Evaluating the potential for grey seal predation to explain elevated natural mortality in three fish species in the southern Gulf of St. Lawrence. Mar Ecol Prog Ser 442:149–167
- Breed GA, Bowen WD, McMillan JI, Leonard ML (2006) Sexual segregation of seasonal foraging habitats in a non-migratory marine mammal. Proc Royal Soc B 273:2319–2326
- Hammill MO, Stenson GB, Proust F, Carter P, McKinnon D (2007) Feeding by grey seals in the Gulf of St. Lawrence and around Newfoundland. NAMMCO Sci Publ 6:135–152
- Hammill MO, Stenson GB, Swain DP, Benoît HP (2014) Feeding by grey seals on endangered stocks of Atlantic cod and white hake. ICES J Mar Sci 71:1332–1341
- Harvey V, Cote SD, Hammill MO (2008) The Ecology of 3-D Space Use in a Sexually Dimorphic Mammal. Ecography 31:371–380
- Swain DP, Savoie L, Cox SP, Aubry E (2015) Assessment of the southern Gulf of St. Lawrence Atlantic cod (*Gadus morhua*) stock of NAFO Div. 4T and 4Vn (November to April), March 2015. DFO Can Sci Advis Sec Res Doc 2015/080. Fisheries and Oceans Canada, Ottawa
- Trzcinski MK, Mohn R, Bowen WD (2006) Continued Decline of an Atlantic Cod Population: How Important Is Gray Seal Predation? Ecol Appl 16:2276–2292

Figure S2.1. Grey seal body mass (top row, estimated from Gompertz growth model), daily metabolism (second row, assuming Kleiber allometric relationship between body mass and metabolism), growth premium for younger seals (third row), daily gross energy intake (fourth row, product of metabolism, growth premium, and conversion factors) and monthly prey consumption (bottom row, quotient of gross energy intake and average energy of prey).

Figure S2.2. Monthly diet composition of (a) male and (b) female Grey Seals foraging near sGSL Cod and Herring.

Figure S2.3. Annual per-capita consumption-at-age in the sGSL (plus NAFO Subdivision 4Vn from November to April) by Grey Seals from the (a) Shelf herd and (b) Gulf herd.

Figure S2.4. Herring consumption by individual sGSL Cod aged 2-12+ yr, 1978-2017.

Supplement 3: Sensitivity analysis of consumption prior

In the multispecies model, we calculated the per-capita consumption by predator *j* in subpopulation *y* at age *b* of prey *i* in year $t(\hat{c}_{j,y,b,i,t})$ and applied a lognormal prior to this quantity to constrain prey consumption within biologically plausible ranges:

$$\ln \hat{c}_{j,y,b,i,t} \sim \mathbb{N} \left(\ln c_{j,y,b,i,t} , \sigma_{c,j}^2 \right)$$

Prior means *c* were calculated from the bioenergetic requirements of predators (grey seals and cod), predator diet composition data, and the spatiotemporal overlap between predator and prey species (Appendix A). Prior standard deviation (σ) was set to 2.0 for seal predation and 0.1 for cod predation. In this appendix, we summarize the sensitivity of the multispecies model to alternative choices of prior standard deviation.

Seal predation

We tested alternative values of $\sigma_{c,j=1} = 0.5$, 1.0 and 2.5 for seal predation on cod and herring. Each of the alternative models fit the observed data approximately as well as the base model ($\sigma_{c,j=1} = 2.0$); increasing σ did not visually improve fits to abundance or biomass indices (Figure S3.1). Median consumption-at-age estimates were similar across values of $\sigma_{c,j=1}$, though estimates were more variable under less constraining priors (Figures S3.2-S3.4). Estimates of biomass and key population processes for all species were very similar across different values of $\sigma_{c,j=1}$ (Figure S3.5). Compared to the base model, setting $\sigma_{c,j=1}$ to 0.5 and 1.0 increased the average rate of natural mortality arising from sources other than fishing and predation ($M^{(O)}$) for cod aged 5 years and older by 19.5% and 14.6% respectively, while setting $\sigma_{c,j=1}$ to 2.5 reduced $M^{(O)}$ by 7.9% (Figure S3.5).

Cod predation

We tested alternative values of $\sigma_{c,j=2} = 0.05$, 0.20, and 1.00 for cod predation on herring. Each of the alternative models fit the observed data approximately as well as the base model $(\sigma_{c,j=2} = 0.1;$ Figure S3.6). Increasing prior standard deviation resulted in less intense predation in the mid-1980s and the mid- to late-1990s, which was offset by higher levels of other natural mortality and reduced cod biomass (Figure S3.7). The more modest consumption estimated by models with higher $\sigma_{c,j=2}$, particularly $\sigma_{c,j=2}=1.00$, was inconsistent with previous studies of cod predation on herring (Benoît and Rail 2016).

References

Benoît HP, Rail J-F (2016) Principal predators and consumption of juvenile and adult Atlantic Herring (*Clupea harengus*) in the southern Gulf of St. Lawrence. DFO Can Sci Advis Sec Res Doc 2016/065. Fisheries and Oceans Canada, Ottawa.

Figure S3.1. Model fits (posterior modes; lines) under four values of $\sigma_{c,j=1}$ to observed abundance or biomass indices (circles). The index represents pup production in numbers for grey seals and vulnerable biomass for cod and herring.

Figure S3.2. Prior mean (circles) and model-estimated (lines, shaded regions) cod consumption per seal using alternative values of $\sigma_{c,j=1}$ (columns). Each row represents a seal subpopulation. Lines represent posterior modes while shaded regions represent central 95% uncertainty intervals.

Figure S3.3. Prior mean (circles) and model-estimated (lines, shaded regions) herring consumption per seal using alternative values of $\sigma_{c,j=1}$ (columns). Each row represents a seal subpopulation. Lines represent posterior modes while shaded regions represent central 95% uncertainty intervals.

Figure S3.4. Model-estimated prey consumption per seal for the oldest seal age-class (30+) using alternative values of $\sigma_{c,j=1}$ (columns).

Figure S3.5. Estimated time-series of key model quantities using alternative values of $\sigma_{c,j=1}$ *.*

Figure S3.6. Model fits (posterior modes; lines) under four values of $\sigma_{c,j=2}$ to observed abundance or biomass indices (circles). The index represents pup production in numbers for grey seals and vulnerable biomass for cod and herring.

Figure S3.7. Estimated time-series of key model quantities using alternative values of $\sigma_{c,j=2}$ *.*

Supplement 4: Stock-recruitment in Herring projections

In our analysis, we fit a Model of Intermediate Complexity for Ecosystem assessments (MICE) to observed data for Grey Seals, Atlantic Cod, and Atlantic Herring, then projected the model forward in time based on the optimized model parameters as well as stock-recruitment and functional response curves fitted to model outputs. In this appendix, we detail the (post-)fitting of stock-recruitment models to MICE estimates and summarize MICE projections using these post-fitted models.

MICE estimates of herring recruitment and spawning biomass

The Spring, Fall-Middle, and Fall-South subpopulations exhibited generally positive relationships between spawning biomass and resulting recruitment, while there was no discernable pattern for Fall-North (Figure S4.1). Density-dependence was somewhat apparent for Spring herring, as the largest stock sizes generated only moderate recruitment (Figure S4.1). In contrast, large stock sizes for Fall-Middle and Fall-South generated large recruitment (Figure S4.1).

Fitting spawner-recruitment relationships to MICE estimates

The shape of the stock-recruitment relationship for herring in the southern Gulf of St. Lawrence is unknown. Herring egg mortality often arises from suffocation at high densities (Haegele & Schweigert 1985), which suggests that a dome-shaped function such as the Ricker may be preferable; however, overcompensation is not always evident in herring stockrecruitment analyses (Zheng 1996). Both Ricker and Beverton-Holt functions were previously fit to recruitment and spawning biomass estimates for herring in the southern Gulf of St. Lawrence, but neither curve was clearly preferable in that analysis (DFO 2005). Given the *a priori* uncertainty around the shape of the stock-recruitment and given the lack of clear evidence for overcompensation in our MICE estimates, we tested both Ricker (1) and Beverton-Holt (2) functions in our analysis, i.e.,

$$\hat{R}_{x,t} = \Psi_{0,x}^{(R)} S_{x,t-2} \exp\left(-\Psi_{1,x}^{(R)} S_{x,t-2}\right) \quad (C.1)$$
$$\hat{R}_{x,t} = \Psi_{0,x}^{(BH)} S_{x,t-2} / \left(1 + \Psi_{1,x}^{(BH)} S_{x,t-2}\right) \quad (C.2)$$

where $R_{x,t}$ and $S_{x,t}$ to represent herring recruitment and spawning biomass, respectively, for subpopulation x in year t, $\Psi_{0,x}$ represents density-independent fecundity and $\Psi_{1,x}$ represents the strength of density-dependence. We use the notation $R_{x,t}$ and $S_{x,t}$ for simplicity in this appendix; in MICE notation, these variables correspond to $N_{i=3,x,a=2,t}$ and $B_{i=3,x,t}$.

MICE-estimated recruitments were assumed to be lognormally-distributed around stockrecruitment function predictions, i.e.,

$$\log(R_{x,t}) \sim N(\log(\hat{R}_{x,t}), \sigma_x^2)$$

The standard deviation parameters (σ_x^2) were estimated. Each stock-recruitment model was fitted to each posterior MICE sample.

Ricker and Beverton-Holt models fits to the MICE estimates of spawning biomass and recruitment for the Fall subpopulations were nearly identical (Figure S4.2). Residual variance was particularly high for the Fall-North population, which was not surprising given the lack of a clear spawner-recruitment relationship in the MICE estimates. The North subpopulation had the highest productivity at low density and the strongest density-dependent effect (Table S4.1).

Extirpation risk projections under Beverton-Holt recruitment

Projections of the MICE assuming Beverton-Holt stock-recruitment dynamics for herring were nearly identical to the Ricker projections presented in the main article. The herring recruitment rate was insensitive to the choice of spawner-recruitment function, resulting in very similar levels of herring spawning biomass (Figure S4.3). Consequently, the choice of spawner-recruitment function had virtually no impact on the projected recovery of cod (Figure S4.4).

References

- DFO 2005. Spawning Stock Biomass Reference Points for Southern Gulf of St. Lawrence Herring. DFO Can Sci Advis Sec Sci Advis Rep 2005/070. Fisheries and Oceans Canada, Ottawa
- Haegele CW, Schweigert JF 1985. Distribution and characteristics of herring spawning grounds and description of spawning behavior. Can J Fish Aquat Sci 42(Suppl. I):39-55
- Zheng J (1996) Herring stock-recruitment relationships and recruitment patterns in the North Atlantic and Northeast Pacific oceans. Fish Res 26:257–277

Table S4.1. Post-fitted herring stock-recruitment parameter estimates. $\Psi_{0,x}$ represents fecundity for subpopulation x, $\Psi_{1,x}$ represents the effect of density dependence for subpopulation x, and σ_x^2 is the residual standard deviation for subpopulation x.

Parameter	Posterior quantiles					
	2.5%	50%	97.5%	2.5%	50%	97.5%
		Ricker		E	Beverton-Hol	t
$\Psi_{0,x=1}$	12.48	14.42	16.24	14.04	18.24	23.55
$\Psi_{0,x=2}$	7.24	10.63	15.61	7.31	11.97	30.25
$\Psi_{0,x=3}$	9.28	9.8	10.34	9.28	9.8	10.34
$\Psi_{0,x=4}$	6.22	6.98	8.93	6.22	6.98	9.21
$\Psi_{1,x=1}$	7.99E-03	9.59E-03	1.11E-02	1.45E-02	2.31E-02	3.39E-02
$\Psi_{1,x=2}$	1.05E-08	4.55E-03	9.79E-03	1.40E-08	7.71E-03	4.25E-02
$\Psi_{1,x=3}$	6.08E-19	1.50E-12	2.91E-09	1.59E-18	5.95E-12	9.50E-10
$\Psi_{1,x=4}$	3.75E-11	3.45E-10	1.69E-03	9.98E-12	2.34E-10	2.20E-03
$\sigma_{x=1}^2$	0.477	0.564	0.723	0.476	0.564	0.724
$\sigma_{x=2}^2$	0.741	1.07	1.411	0.741	1.07	1.411
$\sigma_{x=3}^2$	0.457	0.504	0.55	0.457	0.504	0.55
$\sigma_{x=4}^2$	0.473	0.649	0.972	0.471	0.649	0.972

Figure S4.1. MICE estimates of spawning biomass and recruitment for each herring subpopulation. Circles represent posterior modes while lines indicate the central 95% posterior interval.

Figure S4.2. Post-fitted stock-recruitment relationships for a randomly selected posterior sample of spawning biomass and recruitment from the MICE.

Figure S4.3. Model projections under four harvest plans with annual quotas of 12,000 seals targeting 50% YOY for 10 years. Lines represent posterior modes while shaded regions indicate the central 95% uncertainty interval. Black lines and grey shaded regions represent historical estimates while coloured lines and shaded regions represent projections.

Figure S4.4. Probability of cod biomass in 2058 exceeding the limit reference point (LRP = 80 kt) given Beverton-Holt stock-recruitment functions for Herring, varying levels of seal quota (x-axis) and herring fishing mortality (y-axis), and four combinations of the proportion of YOY seals targeted for removal (p) and the length of the seal harvest period (n; number of years).

Supplement 5. Model fits and diagnostics

Table S5.1. Posterior distribution summaries and parameter-specific diagnostics. tESS and bESS represent tail and bulk effective sample sizes, respectively. For the grey seal component of the model, D and θ represent the half-saturation point and shape of the grey seal juvenile density-dependence relationship, P_{max} is the reproductive rate among mature females, $a_{50\%}$ and a_{step} are parameters of the reproductive rate-at-age.

Parameter	Mean	SD	2.5%	25%	50%	75%	97.5%	tESS	bESS	Rhat
Grey seal population dynamics										
$\ln N_1^{(init)}$	1.968	0.033	1.901	1.945	1.968	1.990	2.029	1186	970	1.001
$\ln N_2^{(init)}$	2.500	0.086	2.359	2.438	2.491	2.554	2.704	602	693	1.004
ln <i>D</i> _{1,1}	3.138	0.130	2.917	3.052	3.125	3.216	3.435	1161	957	1.001
ln <i>D</i> _{1,2}	1.731	0.074	1.572	1.684	1.735	1.783	1.864	625	751	1.002
ln <i>D</i> _{2,1}	-0.403	0.137	-0.688	-0.490	-0.395	-0.306	-0.158	923	807	1.003
ln <i>D</i> _{2,2}	0.866	0.155	0.562	0.762	0.872	0.972	1.149	588	646	1.004
logitγ	2.038	0.059	1.921	1.999	2.036	2.077	2.157	1309	1003	1.003
$\ln a^{(50\%)}$	1.575	0.009	1.557	1.569	1.575	1.582	1.593	2271	1044	0.999
$\ln(a^{(95\%)}-a^{(50\%)})$	0.558	0.081	0.398	0.505	0.557	0.614	0.715	1596	952	1.000
Grey seal relative consumption-at-	age									
$ ho_{1,1}^{50\%}$	-0.497	0.987	-2.604	-1.087	-0.415	0.196	1.226	1257	1281	1.002
$ ho_{1,2}^{50\%}$	-0.309	1.001	-2.324	-0.965	-0.281	0.388	1.545	2009	986	1.002
---	--------	-------	--------	--------	--------	--------	--------	------	------	-------
$ ho_{1,1}^{95\%}$ - $ ho_{1,1}^{50\%}$	15.080	1.935	11.345	13.730	15.188	16.373	18.851	1824	866	1.002
$ ho_{1,2}^{95\%}$ - $ ho_{1,2}^{50\%}$	15.588	1.883	11.875	14.296	15.568	16.836	19.397	1665	1055	1.003
Grey seal per-capita consumption										
$\ln\varphi_{1,1,1,1}$	-8.735	0.220	-9.146	-8.887	-8.733	-8.597	-8.279	401	696	1.008
$\ln \varphi_{1,1,2,1}$	-8.341	0.197	-8.730	-8.474	-8.334	-8.208	-7.969	445	779	1.004
$\ln \varphi_{1,2,1,1}$	-9.545	0.218	-9.942	-9.697	-9.551	-9.408	-9.078	409	684	1.007
$\ln \varphi_{1,2,2,1}$	-7.706	0.197	-8.080	-7.836	-7.701	-7.574	-7.328	437	814	1.005
$\ln \varphi_{1,3,1,1}$	-5.125	0.217	-5.525	-5.266	-5.131	-4.984	-4.660	422	733	1.008
$\ln \varphi_{1,3,2,1}$	-4.872	0.200	-5.267	-5.007	-4.867	-4.740	-4.483	429	840	1.004
$\ln \varphi_{1,4,1,1}$	-6.974	0.220	-7.383	-7.130	-6.978	-6.837	-6.500	431	741	1.007
$\ln \varphi_{1,4,2,1}$	-5.094	0.199	-5.475	-5.231	-5.092	-4.962	-4.717	426	711	1.003
$arepsilon^{(\phi)}_{1,2,2}$	0.033	0.287	-0.533	-0.156	0.026	0.236	0.597	701	972	1.005
$arepsilon^{(\phi)}_{1,3,2}$	0.194	0.252	-0.299	0.010	0.197	0.368	0.677	665	965	1.002
$arepsilon^{(\phi)}_{1,2,3}$	0.152	0.295	-0.429	-0.057	0.162	0.359	0.701	1692	1102	1.006
$arepsilon^{(\phi)}_{1,3,3}$	0.136	0.261	-0.365	-0.041	0.132	0.320	0.652	1238	963	1.000
$arepsilon^{(\phi)}_{1,2,4}$	0.194	0.282	-0.359	0.008	0.185	0.388	0.735	1595	1051	1.003
$arepsilon^{(\phi)}_{1,3,4}$	-0.030	0.271	-0.560	-0.213	-0.029	0.148	0.509	1389	1036	1.000
$\varepsilon^{(\phi)}_{1,2,5}$	0.048	0.292	-0.516	-0.151	0.048	0.238	0.639	1421	911	1.002

$arepsilon^{(\phi)}_{1,3,5}$	-0.013	0.257	-0.543	-0.180	-0.007	0.159	0.451	1145	1026	1.004
$arepsilon^{(\phi)}_{1,2,6}$	0.010	0.303	-0.569	-0.189	0.012	0.209	0.618	1459	1094	1.002
$arepsilon^{(\phi)}_{1,3,6}$	-0.167	0.237	-0.628	-0.325	-0.170	-0.009	0.291	1199	1028	1.001
$arepsilon^{(arphi)}_{1,2,7}$	-0.192	0.310	-0.791	-0.400	-0.184	0.015	0.406	1555	1105	1.002
$arepsilon^{(m{\phi})}_{1,3,7}$	-0.126	0.199	-0.544	-0.250	-0.122	0.007	0.251	1450	1054	1.000
$arepsilon^{(\phi)}_{1,2,8}$	-0.550	0.307	-1.129	-0.756	-0.550	-0.341	0.054	1440	1124	1.000
$arepsilon^{(\phi)}_{1,3,8}$	-0.083	0.209	-0.483	-0.226	-0.079	0.062	0.330	1396	1119	1.001
$arepsilon^{(\phi)}_{1,2,9}$	-0.216	0.301	-0.805	-0.414	-0.212	-0.014	0.380	1524	1134	1.000
$arepsilon^{(\phi)}_{1,3,9}$	0.184	0.221	-0.250	0.035	0.182	0.332	0.629	1446	1249	1.001
$arepsilon^{(\phi)}_{1,2,10}$	-0.248	0.289	-0.793	-0.452	-0.247	-0.046	0.319	1604	1255	1.000
$arepsilon^{(\phi)}_{1,3,10}$	0.369	0.233	-0.097	0.210	0.373	0.522	0.828	1368	1134	0.999
$arepsilon^{(\phi)}_{1,2,11}$	-0.009	0.299	-0.560	-0.214	-0.004	0.191	0.594	1663	1040	1.001
$arepsilon^{(\phi)}_{1,3,11}$	-0.079	0.261	-0.582	-0.249	-0.087	0.096	0.429	1654	1126	0.999
$arepsilon^{(\phi)}_{1,2,12}$	0.077	0.298	-0.515	-0.122	0.069	0.282	0.661	1433	1169	1.003
$arepsilon^{(\phi)}_{1,3,12}$	0.012	0.272	-0.501	-0.170	0.019	0.205	0.526	1629	1065	0.999
$arepsilon^{(\phi)}_{1,2,13}$	0.219	0.311	-0.357	0.006	0.223	0.436	0.800	1290	785	1.002
$arepsilon^{(arphi)}_{1,3,13}$	-0.160	0.279	-0.698	-0.346	-0.159	0.027	0.368	1392	1282	1.000
$arepsilon^{(\phi)}_{1,2,14}$	-0.063	0.304	-0.665	-0.277	-0.070	0.146	0.518	1184	1069	1.003

$\varepsilon_{1,3}^{(\varphi)}$	-0.256	0.279	-0.803	-0.446	-0.243	-0.069	0.270	1407	877	1.001
$\varepsilon_{1,2}^{(\varphi)}$	5 -0.167	0.297	-0.740	-0.366	-0.158	0.027	0.409	1424	1174	1.002
$\varepsilon_{1,3}^{(\varphi)}$	5 -0.254	0.261	-0.768	-0.430	-0.247	-0.076	0.238	1111	871	1.002
$\varepsilon_{1,2}^{(\varphi)}$	6 0.094	0.289	-0.466	-0.103	0.090	0.294	0.654	1500	1147	1.003
$\varepsilon_{1,3}^{(\varphi)}$	-0.136	0.246	-0.614	-0.305	-0.134	0.030	0.332	1201	1082	0.999
$\varepsilon_{1,2}^{(\varphi)}$	7 0.196	0.302	-0.385	-0.015	0.201	0.396	0.794	1563	1195	1.002
$\varepsilon_{1,3}^{(\varphi)}$	7 0.020	0.241	-0.468	-0.138	0.029	0.186	0.486	1219	1141	1.001
$\varepsilon_{1,2}^{(\varphi)}$	8 0.045	0.298	-0.518	-0.156	0.043	0.253	0.642	1459	1278	1.003
$\varepsilon_{1,3}^{(\varphi)}$	8 0.046	0.245	-0.432	-0.114	0.041	0.201	0.521	1335	1072	1.000
$\varepsilon_{1,2}^{(\varphi)}$	9 0.209	0.283	-0.348	0.025	0.205	0.403	0.768	1311	1248	1.002
$\varepsilon_{1,3}^{(\varphi)}$	-0.132	0.241	-0.594	-0.292	-0.136	0.022	0.346	1422	1269	1.002
$\varepsilon_{1,2}^{(\varphi)}$	0.248	0.307	-0.320	0.039	0.249	0.460	0.847	1447	1137	1.001
$\varepsilon_{1,3}^{(\varphi)}$	-0.134	0.240	-0.626	-0.297	-0.130	0.021	0.334	1638	1317	1.002
$\varepsilon_{1,2}^{(\varphi)}$	1 0.266	0.300	-0.314	0.070	0.259	0.467	0.867	1430	1254	1.002
$\varepsilon_{1,3}^{(\varphi)}$	1 0.058	0.234	-0.395	-0.093	0.059	0.210	0.535	1549	1372	1.001
$\varepsilon_{1,2}^{(\varphi)}$	2 0.233	0.303	-0.367	0.028	0.231	0.446	0.813	1522	1398	1.001
$\varepsilon_{1,3}^{(\varphi)}$	2 0.139	0.254	-0.376	-0.034	0.134	0.308	0.646	1344	1028	1.001
$\varepsilon_{1,2}^{(\varphi)}$	-0.125	0.295	-0.738	-0.324	-0.128	0.074	0.435	1448	1052	1.000

$arepsilon^{(\phi)}_{1,3,23}$	-0.111	0.249	-0.611	-0.287	-0.101	0.057	0.379	1552	1228	1.000
$arepsilon^{(\phi)}_{1,2,24}$	0.015	0.284	-0.525	-0.185	0.018	0.198	0.564	1459	1199	1.004
$arepsilon^{(\phi)}_{1,3,24}$	-0.115	0.247	-0.585	-0.282	-0.126	0.055	0.366	1353	1012	1.002
$arepsilon^{(\phi)}_{1,2,25}$	-0.078	0.287	-0.625	-0.267	-0.075	0.103	0.503	1125	1170	1.000
$arepsilon^{(\phi)}_{1,3,25}$	-0.033	0.230	-0.496	-0.192	-0.025	0.125	0.398	1523	1109	1.001
$arepsilon^{(\phi)}_{1,2,26}$	-0.045	0.273	-0.580	-0.225	-0.047	0.143	0.477	1249	1121	0.999
$arepsilon^{(\phi)}_{1,3,26}$	-0.010	0.230	-0.453	-0.168	-0.013	0.147	0.431	1221	1006	1.007
$arepsilon^{(\phi)}_{1,2,27}$	-0.058	0.281	-0.599	-0.251	-0.060	0.122	0.493	1275	1301	1.001
$arepsilon^{(\phi)}_{1,3,27}$	0.133	0.236	-0.310	-0.027	0.132	0.292	0.602	1021	854	1.007
$arepsilon^{(\phi)}_{1,2,28}$	0.127	0.297	-0.412	-0.082	0.118	0.330	0.733	1429	1168	1.002
$arepsilon^{(\phi)}_{1,3,28}$	0.154	0.257	-0.368	-0.017	0.152	0.324	0.658	1220	889	1.004
$arepsilon^{(m{\phi})}_{1,2,29}$	-0.163	0.281	-0.701	-0.357	-0.156	0.016	0.395	1422	1248	1.000
$arepsilon^{(m{\phi})}_{1,3,29}$	-0.200	0.256	-0.663	-0.376	-0.212	-0.030	0.330	1252	1123	0.999
$arepsilon^{(\phi)}_{1,2,30}$	0.009	0.278	-0.516	-0.164	0.017	0.185	0.545	1342	1200	1.002
$arepsilon^{(\phi)}_{1,3,30}$	-0.087	0.248	-0.576	-0.257	-0.093	0.087	0.411	1519	1017	1.004
$arepsilon^{(m{\phi})}_{1,2,31}$	0.118	0.292	-0.459	-0.073	0.128	0.310	0.694	1158	1147	1.002
$arepsilon^{(m{\phi})}_{1,3,31}$	0.012	0.223	-0.437	-0.137	0.018	0.158	0.444	1589	1244	0.999
$arepsilon^{(oldsymbol{\phi})}_{1,2,32}$	0.290	0.306	-0.318	0.083	0.290	0.496	0.893	1232	1012	1.002

$arepsilon^{(arphi)}_{1,3,3}$	-0.026	0.237	-0.470	-0.192	-0.029	0.127	0.457	1471	1099	0.999
$arepsilon^{(arphi)}_{1,2,3}$	0.240	0.311	-0.351	0.026	0.238	0.444	0.862	933	1015	1.001
$arepsilon^{(arphi)}_{1,3,3}$	0.110	0.238	-0.357	-0.049	0.109	0.265	0.583	1283	881	0.999
$arepsilon^{(arphi)}_{1,2,3}$	-0.127	0.298	-0.714	-0.330	-0.134	0.065	0.494	1054	1221	1.002
$arepsilon^{(arphi)}_{1,3,3}$	-0.006	0.244	-0.489	-0.177	-0.008	0.160	0.467	1224	1237	1.000
$arepsilon^{(arphi)}_{1,2,3}$	0.063	0.271	-0.467	-0.121	0.056	0.250	0.616	1069	899	1.000
$arepsilon^{(arphi)}_{1,3,3}$	-0.114	0.242	-0.584	-0.274	-0.118	0.036	0.388	1326	1348	1.000
$arepsilon^{(arphi)}_{1,2,3}$	0.030	0.274	-0.514	-0.151	0.033	0.208	0.566	1277	1068	1.000
$arepsilon^{(arphi)}_{1,3,3}$	0.055	0.243	-0.414	-0.097	0.056	0.219	0.535	1603	1125	1.002
$arepsilon^{(arphi)}_{1,2,3}$	0.783	0.283	0.237	0.592	0.791	0.972	1.337	961	987	0.999
$arepsilon^{(arphi)}_{1,3,3}$	0.121	0.246	-0.353	-0.043	0.113	0.292	0.587	1302	1031	1.001
$arepsilon^{(arphi)}_{1,2,3}$	-0.589	0.261	-1.097	-0.766	-0.593	-0.423	-0.042	750	1039	1.001
$arepsilon^{(arphi)}_{1,3,3}$	0.229	0.266	-0.282	0.041	0.236	0.405	0.730	1481	1195	1.003
$arepsilon^{(arphi)}_{1,2,3}$	0.767	0.234	0.288	0.612	0.770	0.922	1.219	890	1068	1.002
$arepsilon^{(arphi)}_{1,3,3}$	-0.106	0.270	-0.637	-0.293	-0.097	0.081	0.417	1373	1305	1.001
$arepsilon^{(arphi)}_{1,2,4}$	-0.511	0.224	-0.951	-0.657	-0.511	-0.366	-0.057	881	910	1.001
$arepsilon^{(arphi)}_{1,3,4}$	-0.024	0.244	-0.510	-0.184	-0.020	0.139	0.434	1126	1110	1.006
$arepsilon^{(arphi)}_{1,2,4}$	0.155	0.231	-0.301	0.002	0.146	0.316	0.600	771	1162	1.000

$\varepsilon_{1,}^{(q)}$	φ) 3,41	0.109	0.239	-0.348	-0.057	0.111	0.273	0.574	1405	1136	1.000
$\varepsilon_{1,}^{(e)}$	φ) 2,42	0.329	0.227	-0.094	0.168	0.330	0.483	0.781	682	998	1.002
$\varepsilon_{1,}^{(e)}$	φ) 3,42	0.063	0.240	-0.412	-0.089	0.062	0.236	0.512	1570	1260	1.000
$\varepsilon_{1,}^{(e)}$	φ) 2,43	0.033	0.230	-0.435	-0.125	0.030	0.191	0.475	753	945	1.002
$\varepsilon_{1,}^{(e)}$	φ) 3,43	-0.036	0.239	-0.499	-0.201	-0.036	0.120	0.446	1762	1155	1.000
$\varepsilon_{1,}^{(e)}$	φ) 2,44	-0.314	0.228	-0.769	-0.462	-0.319	-0.164	0.155	863	841	1.000
$\varepsilon_{1,}^{(e)}$	φ) 3,44	0.141	0.230	-0.328	-0.013	0.142	0.304	0.573	1768	1094	0.999
$\varepsilon_{1,}^{(e)}$	φ) 2,45	-0.005	0.229	-0.474	-0.153	0.002	0.150	0.441	894	1000	0.999
$\varepsilon_{1,}^{(e)}$	φ) 3,45	0.203	0.238	-0.278	0.047	0.205	0.364	0.681	1535	1332	0.999
$\varepsilon_{1,}^{(e)}$	φ) 2,46	0.581	0.234	0.135	0.427	0.571	0.737	1.046	853	933	1.001
$\varepsilon_{1,}^{(e)}$	φ) 3,46	0.492	0.272	-0.042	0.311	0.487	0.680	1.026	1269	1128	1.007
$\varepsilon_{1,i}^{(0)}$	φ) 2,47	-0.041	0.226	-0.481	-0.191	-0.048	0.100	0.427	1068	1023	1.003
$\varepsilon_{1,}^{(0)}$	φ) 3,47	-0.187	0.288	-0.760	-0.374	-0.184	0.002	0.378	1203	1209	1.005
$\varepsilon_{1,}^{(0)}$	φ) 2,48	0.255	0.245	-0.245	0.098	0.256	0.418	0.753	1628	1124	1.006
$\varepsilon_{1,j}^{(0)}$	φ) 3,48	-0.246	0.263	-0.737	-0.415	-0.251	-0.069	0.286	1907	1216	1.006
Са	od relative consumption-at-age										
$ ho_2^5$	0% 1	6.410	0.113	6.198	6.332	6.411	6.487	6.629	1114	1138	1.001
$ ho_2^9$	${}^{5\%}_{,1}$ - $ ho^{50\%}_{2,1}$	1.319	0.041	1.240	1.292	1.319	1.346	1.399	1150	1165	1.002

Cod per-capita consumption										
$\ln\varphi_{2,1,3,1}$	-8.131	0.270	-8.667	-8.316	-8.127	-7.945	-7.620	1587	1242	1.011
$arepsilon^{(\phi)}_{2,3,2}$	0.931	0.483	0.013	0.603	0.910	1.250	1.931	1056	981	1.002
$\mathcal{E}^{(\phi)}_{2,3,3}$	-0.438	0.516	-1.452	-0.768	-0.437	-0.090	0.567	1291	956	1.000
$arepsilon^{(\phi)}_{2,3,4}$	-0.239	0.439	-1.107	-0.536	-0.246	0.064	0.623	1297	1129	1.001
$arepsilon^{(m{\phi})}_{2,3,5}$	-0.622	0.407	-1.413	-0.900	-0.616	-0.346	0.133	1389	851	1.000
$\mathcal{E}^{(\phi)}_{2,3,6}$	0.405	0.377	-0.316	0.145	0.407	0.662	1.128	1657	1177	0.999
$arepsilon^{(\phi)}_{2,3,7}$	-0.497	0.351	-1.164	-0.739	-0.508	-0.256	0.183	1705	1141	1.001
$arepsilon^{(\phi)}_{2,3,8}$	-0.028	0.366	-0.733	-0.281	-0.033	0.216	0.675	1658	1286	1.000
$arepsilon^{(\phi)}_{2,3,9}$	-0.891	0.373	-1.591	-1.140	-0.900	-0.651	-0.163	1306	1190	1.000
$arepsilon^{(arphi)}_{2,3,10}$	1.227	0.399	0.467	0.952	1.216	1.489	2.022	1271	865	1.000
${\cal E}^{(\phi)}_{2,3,11}$	0.103	0.413	-0.707	-0.160	0.101	0.381	0.904	1702	1107	1.000
${\cal E}^{(\phi)}_{2,3,12}$	-0.127	0.399	-0.897	-0.386	-0.127	0.141	0.673	1819	1117	1.001
${\cal E}^{(\phi)}_{2,3,13}$	0.414	0.368	-0.308	0.171	0.419	0.666	1.109	1488	1063	1.002
$arepsilon^{(\phi)}_{2,3,14}$	0.771	0.350	0.115	0.516	0.774	1.017	1.437	1330	1124	1.001
$arepsilon^{(arphi)}_{2,3,15}$	0.064	0.334	-0.576	-0.160	0.061	0.287	0.741	1035	1033	1.000
$\mathcal{E}^{(\phi)}_{2,3,16}$	0.338	0.317	-0.271	0.118	0.335	0.551	0.981	1315	1282	1.003
$arepsilon^{(oldsymbol{\phi})}_{2,3,17}$	-0.191	0.352	-0.880	-0.433	-0.188	0.040	0.462	1426	1304	1.000

$arepsilon^{(\phi)}_{2,3,18}$	-0.150	0.395	-0.954	-0.412	-0.142	0.117	0.610	1542	1249	1.001
$arepsilon^{(\phi)}_{2,3,19}$	-0.448	0.358	-1.128	-0.691	-0.447	-0.207	0.268	1544	1131	1.003
$arepsilon^{(\phi)}_{2,3,20}$	-0.100	0.371	-0.837	-0.352	-0.106	0.153	0.595	1382	1147	1.000
$arepsilon^{(\phi)}_{2,3,21}$	-0.046	0.369	-0.781	-0.297	-0.055	0.207	0.681	1373	1029	1.001
$arepsilon^{(\phi)}_{2,3,22}$	-0.121	0.397	-0.858	-0.395	-0.132	0.142	0.702	1225	995	0.999
$arepsilon^{(arphi)}_{2,3,23}$	0.186	0.396	-0.602	-0.080	0.190	0.456	0.965	1145	898	1.002
$arepsilon^{(m{\phi})}_{2,3,24}$	0.149	0.344	-0.494	-0.084	0.150	0.384	0.819	1556	1283	1.002
$arepsilon^{(m{\phi})}_{2,3,25}$	0.126	0.350	-0.569	-0.106	0.132	0.363	0.808	1357	1091	1.004
$arepsilon^{(m{\phi})}_{2,3,26}$	0.235	0.352	-0.476	-0.010	0.247	0.483	0.905	1223	1098	1.005
$arepsilon^{(m{\phi})}_{2,3,27}$	0.257	0.411	-0.533	-0.028	0.253	0.551	1.057	1294	1066	1.002
$arepsilon^{(m{\phi})}_{2,3,28}$	-0.150	0.412	-0.936	-0.438	-0.157	0.111	0.702	1327	1249	1.001
$arepsilon^{(m{\phi})}_{2,3,29}$	-0.438	0.373	-1.160	-0.691	-0.429	-0.189	0.278	1442	1054	1.002
$arepsilon^{(m{\phi})}_{2,3,30}$	0.237	0.376	-0.498	-0.016	0.241	0.491	0.952	1449	1171	0.999
$arepsilon^{(m{\phi})}_{2,3,31}$	-0.013	0.380	-0.744	-0.263	-0.010	0.234	0.732	1500	1099	1.001
$arepsilon^{(m{\phi})}_{2,3,32}$	-0.582	0.377	-1.301	-0.841	-0.580	-0.342	0.167	1305	1254	1.000
$arepsilon^{(m{\phi})}_{2,3,33}$	0.171	0.367	-0.548	-0.072	0.168	0.421	0.910	1608	1183	1.004
${\cal E}_{2,3,34}^{(m{\phi})}$	-0.082	0.368	-0.755	-0.340	-0.081	0.174	0.652	1603	1092	1.005
$arepsilon^{(m{\phi})}_{2,3,35}$	-0.076	0.371	-0.817	-0.326	-0.072	0.175	0.647	1376	1042	1.004

$\mathcal{E}^{(\phi)}_{2,3,36}$	0.115	0.382	-0.622	-0.149	0.112	0.384	0.847	1413	1273	1.003
$arepsilon^{(\phi)}_{2,3,37}$	-0.022	0.395	-0.796	-0.283	-0.019	0.233	0.742	1516	964	1.003
$arepsilon^{(\phi)}_{2,3,38}$	-0.156	0.386	-0.892	-0.431	-0.154	0.099	0.622	1484	1252	1.003
$arepsilon^{(m{\phi})}_{2,3,39}$	-0.034	0.390	-0.792	-0.300	-0.027	0.235	0.710	1322	1042	1.001
$arepsilon^{(arphi)}_{2,3,40}$	-0.098	0.374	-0.831	-0.356	-0.098	0.141	0.639	1420	1150	1.000
$arepsilon^{(m{\phi})}_{2,3,41}$	0.105	0.399	-0.660	-0.185	0.107	0.372	0.901	1718	1143	1.000
$arepsilon^{(m{\phi})}_{2,3,42}$	-0.384	0.400	-1.126	-0.662	-0.381	-0.106	0.427	1511	1121	1.002
$arepsilon^{(m{\phi})}_{2,3,43}$	0.564	0.394	-0.212	0.313	0.563	0.821	1.349	1400	980	1.000
$arepsilon^{(\phi)}_{2,3,44}$	0.758	0.377	0.035	0.506	0.752	1.027	1.509	1392	1403	1.000
$arepsilon^{(m{\phi})}_{2,3,45}$	-0.877	0.380	-1.586	-1.139	-0.878	-0.615	-0.128	1479	1065	1.002
$\mathcal{E}^{(\phi)}_{2,3,46}$	0.174	0.375	-0.559	-0.074	0.167	0.420	0.917	1658	1222	1.002
$arepsilon_{2,3,47}^{(\phi)}$	0.831	0.381	0.090	0.574	0.832	1.083	1.579	1669	1283	1.002
$arepsilon_{2,3,48}^{(\phi)}$	-1.377	0.391	-2.122	-1.649	-1.376	-1.108	-0.584	2006	1241	1.000
Cod fishery and survey selectivity										
$\ln s^{50\%}_{1,2,1,1:11}$	1.474	0.014	1.447	1.464	1.473	1.483	1.500	1101	970	0.999
$\ln s_{1,2,1,12:24}^{50\%}$	1.632	0.012	1.608	1.624	1.632	1.640	1.657	1413	1146	1.000
$\ln s_{1,2,1,25:48}^{50\%}$	1.868	0.015	1.840	1.857	1.868	1.878	1.896	665	927	1.011
$\ln s_{2,2,1,1:48}^{50\%}$	1.394	0.020	1.355	1.382	1.394	1.407	1.433	1097	945	1.002

$\ln s^{50\%}_{3,2,1,1:48}$	1.324	0.028	1.269	1.305	1.324	1.343	1.379	974	941	1.000
$\ln s^{50\%}_{4,2,1,1:48}$	1.971	0.014	1.944	1.961	1.971	1.980	1.999	926	1071	1.003
$\ln(s^{95\%}_{1,2,1,1:11}\text{-}s^{50\%}_{1,2,1,1:11})$	-0.225	0.044	-0.307	-0.256	-0.227	-0.194	-0.137	1021	1070	1.001
$\ln(s^{95\%}_{1,2,1,12:24}\text{-}s^{50\%}_{1,2,1,12:24})$	-0.066	0.031	-0.128	-0.088	-0.066	-0.045	-0.006	820	1132	1.006
$\ln(s^{95\%}_{1,2,1,25:48}\text{-}s^{50\%}_{1,2,1,25:48})$	0.609	0.034	0.544	0.586	0.609	0.632	0.675	416	809	1.016
$\ln(s^{95\%}_{2,2,1,1:48}\text{-}s^{50\%}_{2,2,1,1:48})$	0.835	0.050	0.744	0.799	0.832	0.868	0.939	457	700	1.012
$\ln(s^{95\%}_{3,2,1,1:48}\text{-}s^{50\%}_{3,2,1,1:48})$	0.621	0.062	0.501	0.579	0.621	0.663	0.741	1027	1047	1.004
$\ln(s^{95\%}_{4,2,1,1:48}\text{-}s^{50\%}_{4,2,1,1:48})$	0.980	0.038	0.906	0.954	0.980	1.004	1.057	1070	1110	1.001
Recruitment deviations										
$arepsilon^{(\mathrm{R})}_{2,1,2}$	0.427	0.099	0.227	0.357	0.431	0.495	0.614	1892	1189	1.000
$arepsilon^{(\mathrm{R})}_{2,1,3}$	0.068	0.102	-0.134	0.002	0.065	0.137	0.261	1691	1052	1.002
$arepsilon^{(\mathrm{R})}_{2,1,4}$	-0.049	0.100	-0.242	-0.120	-0.044	0.016	0.141	1372	934	1.000
$arepsilon^{(\mathrm{R})}_{2,1,5}$	1.053	0.096	0.863	0.987	1.051	1.118	1.235	1479	1416	1.000
$arepsilon^{(\mathrm{R})}_{2,1,6}$	0.252	0.090	0.079	0.189	0.249	0.314	0.431	1655	1374	1.000
$arepsilon^{(\mathrm{R})}_{2,1,7}$	0.268	0.093	0.093	0.204	0.265	0.331	0.458	1796	1226	1.002
$arepsilon^{(\mathrm{R})}_{2,1,8}$	-0.326	0.096	-0.520	-0.387	-0.325	-0.263	-0.141	1562	1224	1.002
$arepsilon^{(\mathrm{R})}_{2,1,9}$	-0.181	0.101	-0.377	-0.248	-0.178	-0.111	0.014	1329	1091	1.003
$\varepsilon^{(R)}_{2,1,10}$	-0.216	0.101	-0.410	-0.285	-0.215	-0.147	-0.012	1271	1161	1.003

$\varepsilon_{2,1,11}^{(R)}$	0.715	0.101	0.520	0.646	0.717	0.782	0.916	1253	1230	1.002
$\varepsilon^{(\mathrm{R})}_{2,1,12}$	0.103	0.101	-0.095	0.036	0.102	0.170	0.309	1514	958	1.000
$arepsilon^{(\mathrm{R})}_{2,1,13}$	-0.675	0.096	-0.869	-0.738	-0.674	-0.611	-0.487	1263	1311	0.999
$\varepsilon^{(\mathrm{R})}_{2,1,14}$	0.007	0.098	-0.180	-0.060	0.003	0.072	0.197	1281	1164	1.001
$\varepsilon^{(R)}_{2,1,15}$	-0.009	0.101	-0.202	-0.075	-0.010	0.059	0.195	1258	1191	1.000
$arepsilon^{(\mathrm{R})}_{2,1,16}$	-0.147	0.103	-0.348	-0.214	-0.147	-0.078	0.055	1287	1141	1.002
$arepsilon^{(\mathrm{R})}_{2,1,17}$	-0.108	0.090	-0.272	-0.170	-0.109	-0.048	0.073	1331	956	1.002
$arepsilon^{(R)}_{2,1,18}$	-0.022	0.085	-0.187	-0.077	-0.023	0.034	0.148	1508	1284	1.000
$\varepsilon_{2,1,19}^{(R)}$	0.056	0.084	-0.109	-0.001	0.056	0.115	0.213	1264	1227	1.001
$arepsilon^{(\mathrm{R})}_{2,1,20}$	-0.219	0.085	-0.384	-0.278	-0.219	-0.162	-0.051	1398	945	1.002
$arepsilon^{(\mathrm{R})}_{2,1,21}$	-0.365	0.082	-0.529	-0.420	-0.366	-0.308	-0.216	1837	1149	1.005
$arepsilon^{(\mathrm{R})}_{2,1,22}$	-0.086	0.078	-0.236	-0.139	-0.088	-0.034	0.069	1432	1185	1.001
$arepsilon^{(\mathrm{R})}_{2,1,23}$	-0.052	0.080	-0.203	-0.107	-0.052	0.007	0.101	1286	1187	1.000
$arepsilon^{(\mathrm{R})}_{2,1,24}$	0.070	0.079	-0.085	0.017	0.070	0.123	0.227	1315	1057	0.999
$arepsilon^{(\mathrm{R})}_{2,1,25}$	-0.358	0.078	-0.511	-0.409	-0.358	-0.306	-0.204	1684	938	1.001
$\varepsilon^{(\mathrm{R})}_{2,1,26}$	0.453	0.079	0.299	0.400	0.453	0.506	0.602	1268	1015	1.001
$\varepsilon^{(\mathrm{R})}_{2,1,27}$	0.022	0.075	-0.130	-0.029	0.019	0.072	0.171	1389	1098	1.003
$\varepsilon^{(\mathrm{R})}_{2,1,28}$	-0.121	0.075	-0.262	-0.174	-0.123	-0.069	0.026	1524	1210	1.002

$arepsilon^{(\mathrm{R})}_{2,1,29}$	-0.042	0.077	-0.197	-0.098	-0.039	0.007	0.110	1552	1142	1.002
$arepsilon^{(\mathrm{R})}_{2,1,30}$	-0.401	0.076	-0.546	-0.453	-0.401	-0.350	-0.251	1503	1141	1.001
$arepsilon^{(\mathrm{R})}_{2,1,31}$	0.171	0.079	0.015	0.118	0.173	0.223	0.326	1285	1220	1.001
$arepsilon^{(\mathrm{R})}_{2,1,32}$	0.072	0.076	-0.081	0.021	0.072	0.123	0.223	1396	1200	1.000
$arepsilon^{(\mathrm{R})}_{2,1,33}$	0.284	0.074	0.133	0.235	0.287	0.334	0.427	1353	1223	1.006
$arepsilon^{(\mathrm{R})}_{2,1,34}$	-0.615	0.075	-0.768	-0.664	-0.613	-0.565	-0.472	1353	1167	1.002
$arepsilon^{(\mathrm{R})}_{2,1,35}$	-0.137	0.092	-0.323	-0.195	-0.134	-0.077	0.037	992	1068	1.000
$arepsilon^{(\mathrm{R})}_{2,1,36}$	-0.377	0.082	-0.536	-0.432	-0.378	-0.322	-0.218	1055	814	1.003
$arepsilon^{(\mathrm{R})}_{2,1,37}$	0.371	0.089	0.202	0.309	0.372	0.431	0.545	927	1097	1.004
$arepsilon^{(\mathrm{R})}_{2,1,38}$	-0.142	0.077	-0.292	-0.192	-0.143	-0.092	0.009	999	1144	1.003
$arepsilon^{(\mathrm{R})}_{2,1,39}$	-0.372	0.084	-0.531	-0.427	-0.372	-0.315	-0.202	877	1028	1.002
$arepsilon^{(\mathrm{R})}_{2,1,40}$	0.577	0.092	0.395	0.518	0.581	0.637	0.757	823	823	1.001
$arepsilon^{(\mathrm{R})}_{2,1,41}$	-0.314	0.094	-0.500	-0.374	-0.317	-0.249	-0.133	972	900	1.002
$arepsilon^{(\mathrm{R})}_{2,1,42}$	0.111	0.091	-0.069	0.049	0.112	0.176	0.292	1295	1193	1.004
$arepsilon^{(\mathrm{R})}_{2,1,43}$	0.152	0.093	-0.028	0.086	0.156	0.215	0.323	1178	1029	1.002
$arepsilon^{(\mathrm{R})}_{2,1,44}$	-0.492	0.110	-0.706	-0.568	-0.492	-0.418	-0.277	1190	1098	1.003
$arepsilon^{(\mathrm{R})}_{2,1,45}$	-0.496	0.118	-0.722	-0.577	-0.497	-0.414	-0.275	1728	1240	1.006
$\varepsilon_{2,1,46}^{(R)}$	-0.582	0.132	-0.843	-0.669	-0.586	-0.494	-0.320	1652	1218	1.000

$\varepsilon^{(R)}_{2,1,47}$	0.749	0.151	0.459	0.644	0.746	0.850	1.056	2067	1118	1.002
$\varepsilon^{(\mathrm{R})}_{2,1,48}$	-0.194	0.221	-0.632	-0.348	-0.198	-0.036	0.230	2368	1194	1.005
Initial cod abundance										
$\ln N_{2,1,2,2}$	4.954	0.175	4.616	4.839	4.953	5.071	5.308	342	605	1.020
ln <i>N</i> _{2,1,2,3}	4.976	0.127	4.731	4.893	4.973	5.054	5.250	360	600	1.020
$\ln N_{2,1,2,4}$	4.407	0.095	4.228	4.345	4.405	4.470	4.599	583	716	1.011
$\ln N_{2,1,2,5}$	3.825	0.083	3.668	3.768	3.824	3.878	3.986	1799	1088	1.007
ln <i>N</i> _{2,1,2,6}	3.517	0.091	3.344	3.454	3.517	3.580	3.695	1487	1145	1.003
$\ln N_{2,1,2,7}$	3.023	0.091	2.845	2.958	3.021	3.087	3.201	1416	1129	1.003
lnN _{2,1,2,8}	1.634	0.112	1.414	1.560	1.632	1.711	1.854	2151	1094	1.001
lnN _{2,1,2,9}	0.771	0.133	0.514	0.679	0.776	0.865	1.025	2025	1135	1.000
ln <i>N</i> _{2,1,2,10}	0.739	0.154	0.440	0.639	0.739	0.838	1.061	2713	1013	1.002
$\ln N_{2,1,2,11}$	-0.042	0.207	-0.451	-0.184	-0.041	0.100	0.351	1900	943	1.003
$\ln N_{2,1,2,12}$	0.314	0.314	-0.312	0.107	0.321	0.529	0.868	2521	1072	0.999
Cod natural mortality										
$\ln M_{2,1,2:4,1:48}$	-0.584	0.086	-0.757	-0.641	-0.580	-0.524	-0.431	340	748	1.017
$\varepsilon_2^{(M,c)}$	0.018	0.095	-0.168	-0.048	0.015	0.086	0.200	1242	960	1.002
$\varepsilon_3^{(M,c)}$	0.018	0.093	-0.157	-0.044	0.018	0.082	0.201	1658	1177	1.002
$\mathcal{E}_{4}^{(\mathrm{M,c})}$	0.059	0.090	-0.128	0.002	0.060	0.118	0.237	2344	1219	1.001
$arepsilon_5^{({ m M},c)}$	0.112	0.096	-0.069	0.049	0.115	0.174	0.296	2087	1149	1.002

$\varepsilon_6^{(M,c)}$	0.137	0.092	-0.042	0.076	0.136	0.196	0.314	2078	1111	1.002
$\mathcal{E}_{7}^{(M,c)}$	0.075	0.099	-0.110	0.006	0.071	0.146	0.259	1687	1079	1.000
$\varepsilon_8^{(M,c)}$	0.031	0.091	-0.146	-0.031	0.033	0.092	0.206	2173	1201	1.002
$\varepsilon_9^{(M,c)}$	0.006	0.090	-0.161	-0.058	0.004	0.067	0.179	2791	1096	1.008
$\varepsilon_{10}^{(M,c)}$	0.023	0.094	-0.159	-0.041	0.021	0.088	0.205	2438	914	1.004
$\varepsilon_{11}^{(M,c)}$	0.022	0.090	-0.151	-0.040	0.022	0.083	0.199	1708	1128	1.003
$\varepsilon_{12}^{(M,c)}$	0.073	0.093	-0.101	0.008	0.073	0.141	0.253	1622	1163	1.000
$\varepsilon_{13}^{(M,c)}$	0.015	0.090	-0.149	-0.048	0.012	0.079	0.197	2285	1450	1.002
$\varepsilon_{14}^{(M,c)}$	-0.056	0.092	-0.231	-0.117	-0.058	0.007	0.129	2046	864	1.004
$\varepsilon_{15}^{(\mathrm{M,c})}$	-0.068	0.090	-0.247	-0.129	-0.068	-0.012	0.109	1663	1098	1.001
$\mathcal{E}_{16}^{(M,c)}$	-0.043	0.090	-0.218	-0.106	-0.042	0.018	0.130	2035	1202	1.006
$\varepsilon_{17}^{(M,c)}$	0.020	0.092	-0.156	-0.046	0.022	0.083	0.201	2936	1050	1.002
$\varepsilon_{18}^{(\mathrm{M,c})}$	0.037	0.093	-0.134	-0.028	0.039	0.100	0.223	1889	1153	1.002
$\varepsilon_{19}^{(M,c)}$	0.074	0.093	-0.108	0.010	0.077	0.137	0.252	1841	1298	1.007
$\varepsilon_{20}^{(M,c)}$	0.072	0.087	-0.095	0.013	0.071	0.133	0.245	2026	1244	0.999
$\varepsilon_{21}^{(M,c)}$	0.030	0.085	-0.135	-0.026	0.027	0.084	0.202	2081	1141	1.001
$\varepsilon_{22}^{(M,c)}$	0.013	0.087	-0.155	-0.045	0.013	0.072	0.185	1956	1273	1.003
$\mathcal{E}_{23}^{(\mathrm{M,c})}$	-0.067	0.094	-0.245	-0.132	-0.069	-0.003	0.122	2150	1266	1.001

$arepsilon_{24}^{(\mathrm{M,c})}$	-0.033	0.095	-0.211	-0.102	-0.033	0.033	0.151	1974	1064	1.003
$arepsilon_{25}^{(\mathrm{M,c})}$	-0.026	0.094	-0.202	-0.094	-0.025	0.037	0.162	2003	1152	1.001
$arepsilon_{26}^{(\mathrm{M,c})}$	-0.001	0.087	-0.169	-0.061	0.000	0.057	0.173	1696	1219	1.000
$arepsilon_{27}^{(\mathrm{M,c})}$	0.005	0.090	-0.158	-0.057	0.002	0.064	0.191	1738	1117	1.003
$arepsilon_{28}^{(\mathrm{M,c})}$	-0.003	0.093	-0.185	-0.067	-0.005	0.060	0.177	1791	1007	1.000
$arepsilon_{29}^{(\mathrm{M,c})}$	-0.037	0.090	-0.211	-0.099	-0.039	0.023	0.138	1561	1141	1.002
$arepsilon_{30}^{(\mathrm{M,c})}$	0.037	0.091	-0.150	-0.022	0.039	0.099	0.214	2212	860	1.002
$\varepsilon_{31}^{(M,c)}$	0.075	0.094	-0.109	0.013	0.075	0.139	0.254	1399	1102	1.002
$\varepsilon_{32}^{(M,c)}$	0.042	0.094	-0.147	-0.020	0.043	0.104	0.224	1884	1125	1.001
$\varepsilon_{33}^{(M,c)}$	-0.003	0.096	-0.191	-0.064	-0.003	0.060	0.184	1985	1039	1.002
$\varepsilon_{34}^{(M,c)}$	-0.090	0.094	-0.273	-0.156	-0.090	-0.022	0.088	2962	1133	1.000
$\varepsilon_{35}^{(\mathrm{M,c})}$	-0.073	0.096	-0.263	-0.143	-0.069	-0.006	0.113	1922	1093	1.003
$\varepsilon_{36}^{(M,c)}$	-0.048	0.095	-0.235	-0.115	-0.047	0.018	0.136	2129	1232	1.000
$arepsilon_{37}^{(M,c)}$	-0.056	0.099	-0.251	-0.126	-0.056	0.010	0.137	2404	1143	1.000
$\varepsilon_{38}^{(\mathrm{M,c})}$	-0.131	0.092	-0.306	-0.195	-0.131	-0.069	0.049	1886	998	1.001
$\mathcal{E}_{39}^{(M,c)}$	-0.080	0.092	-0.261	-0.141	-0.080	-0.020	0.101	2027	1258	1.003
$\mathcal{E}_{40}^{(\mathrm{M,c})}$	-0.101	0.095	-0.290	-0.164	-0.101	-0.039	0.084	2150	1070	1.001
$\mathcal{E}_{41}^{(\mathrm{M,c})}$	-0.058	0.097	-0.256	-0.123	-0.055	0.006	0.128	1808	915	1.000
$\varepsilon_{41}^{(M,c)}$	-0.058	0.097	-0.256	-0.123	-0.055	0.006	0.128	1808	915]

$arepsilon_{42}^{(\mathrm{M,c})}$	-0.046	0.099	-0.237	-0.114	-0.044	0.019	0.143	1874	966	1.000
$arepsilon_{43}^{(\mathrm{M,c})}$	-0.046	0.098	-0.238	-0.114	-0.044	0.023	0.133	2215	1120	1.000
$\mathcal{E}_{44}^{(M,c)}$	-0.047	0.095	-0.232	-0.109	-0.048	0.019	0.143	1840	1174	1.001
$\mathcal{E}_{45}^{(M,c)}$	-0.019	0.100	-0.205	-0.090	-0.017	0.051	0.170	1884	961	0.999
$arepsilon_{46}^{(\mathrm{M,c})}$	-0.001	0.095	-0.195	-0.066	0.000	0.065	0.182	2204	1285	1.000
$arepsilon_{47}^{(ext{M,c})}$	-0.021	0.094	-0.203	-0.083	-0.019	0.040	0.164	1869	1009	1.003
$arepsilon_{48}^{(ext{M,c})}$	-0.013	0.096	-0.202	-0.079	-0.013	0.056	0.170	2367	1150	1.001
Predator selectivity of herring										
$b^{50\%}$	7.986	0.162	7.664	7.884	7.991	8.090	8.309	430	570	1.001
$\ln(b^{95\%}-b^{50\%})$	1.622	0.016	1.591	1.612	1.623	1.633	1.654	503	751	1.001
lnk	1.521	0.015	1.489	1.511	1.521	1.531	1.550	650	875	1.001
lnθ	0.175	0.022	0.129	0.163	0.175	0.189	0.219	436	637	1.002
Herring recruitment										
$\ln \bar{R}_1$	6.219	0.027	6.171	6.201	6.217	6.236	6.274	581	929	1.004
$\ln \bar{R}_2$	6.292	0.048	6.190	6.262	6.295	6.324	6.386	785	986	1.002
$\ln \bar{R}_3$	5.012	0.052	4.908	4.978	5.012	5.049	5.115	730	1008	1.009
$\ln \overline{R}_4$	6.177	0.054	6.069	6.142	6.179	6.214	6.278	773	969	1.001
$\varepsilon^{(\mathrm{R})}_{3,1,9}$	-0.134	0.190	-0.551	-0.248	-0.114	-0.004	0.190	743	881	1.000
$\varepsilon^{(R)}_{3,2,9}$	-0.691	0.337	-1.341	-0.924	-0.697	-0.465	-0.015	845	771	1.006
$\mathcal{E}_{3,3,9}^{(\mathrm{R})}$	0.465	0.313	-0.151	0.262	0.460	0.672	1.072	955	1015	1.002

$arepsilon^{(\mathrm{R})}_{3,4,9}$	0.070	0.220	-0.346	-0.079	0.061	0.222	0.481	885	930	1.000
${\cal E}_{3,1,10}^{({ m R})}$	0.458	0.176	0.129	0.336	0.451	0.578	0.809	812	876	1.001
$arepsilon^{(\mathrm{R})}_{3,2,10}$	0.086	0.149	-0.198	-0.017	0.093	0.188	0.367	793	1077	1.001
$\varepsilon^{(R)}_{3,3,10}$	-0.481	0.170	-0.802	-0.596	-0.481	-0.365	-0.158	1077	1119	1.001
$arepsilon^{(\mathrm{R})}_{3,4,10}$	-0.348	0.210	-0.751	-0.487	-0.358	-0.202	0.078	1136	1119	1.002
$arepsilon^{(\mathrm{R})}_{3,1,11}$	0.581	0.217	0.162	0.429	0.580	0.738	0.995	1014	1147	1.000
$arepsilon^{(\mathrm{R})}_{3,2,11}$	0.493	0.191	0.108	0.360	0.491	0.619	0.880	843	914	1.001
$\varepsilon^{(R)}_{3,3,11}$	-0.518	0.152	-0.807	-0.625	-0.517	-0.413	-0.226	851	1018	1.007
$arepsilon^{(\mathrm{R})}_{3,4,11}$	0.502	0.122	0.272	0.419	0.505	0.580	0.736	1037	840	1.001
$arepsilon^{(\mathrm{R})}_{3,1,12}$	0.335	0.094	0.147	0.272	0.334	0.398	0.515	1062	1123	1.000
$\varepsilon^{(R)}_{3,2,12}$	-0.559	0.131	-0.820	-0.646	-0.558	-0.468	-0.300	800	786	1.004
$\varepsilon^{(\mathrm{R})}_{3,3,12}$	1.023	0.115	0.803	0.948	1.020	1.097	1.260	865	1014	1.007
$arepsilon^{(\mathrm{R})}_{3,4,12}$	-1.521	0.150	-1.821	-1.624	-1.521	-1.415	-1.244	881	1089	1.001
$arepsilon^{(\mathrm{R})}_{3,1,13}$	0.646	0.173	0.316	0.526	0.644	0.757	0.997	832	1020	1.001
$arepsilon^{(\mathrm{R})}_{3,2,13}$	-0.363	0.159	-0.683	-0.466	-0.361	-0.260	-0.067	1042	989	1.001
$arepsilon^{(\mathrm{R})}_{3,3,13}$	-0.030	0.153	-0.335	-0.133	-0.027	0.075	0.266	1300	1239	1.003
$arepsilon^{(R)}_{3,4,13}$	-0.237	0.152	-0.530	-0.342	-0.239	-0.135	0.065	1184	988	1.002
$\varepsilon_{3,1,14}^{(R)}$	-0.001	0.147	-0.304	-0.101	0.001	0.102	0.265	1183	1098	1.003

$arepsilon_{3,2,14}^{(m R)}$	-0.329	0.160	-0.647	-0.436	-0.333	-0.216	-0.034	1022	1013	1.002
$arepsilon^{({ m R})}_{3,3,14}$	0.443	0.161	0.128	0.335	0.445	0.552	0.756	1045	971	1.002
$arepsilon^{(\mathrm{R})}_{3,4,14}$	-1.391	0.152	-1.694	-1.488	-1.388	-1.288	-1.099	1076	979	0.998
$arepsilon^{(\mathrm{R})}_{3,1,15}$	1.092	0.150	0.802	0.990	1.101	1.190	1.387	1084	1031	1.001
$arepsilon_{3,2,15}^{(m R)}$	-0.247	0.148	-0.561	-0.346	-0.243	-0.143	0.020	1086	928	1.001
$\varepsilon^{(\mathrm{R})}_{3,3,15}$	-0.300	0.153	-0.612	-0.404	-0.298	-0.202	0.000	955	854	1.000
$arepsilon_{3,4,15}^{(m R)}$	0.139	0.145	-0.136	0.037	0.137	0.238	0.434	1100	1115	1.003
$\varepsilon^{(\mathrm{R})}_{3,1,16}$	0.083	0.141	-0.194	-0.016	0.080	0.177	0.363	1038	956	1.006
$arepsilon^{(\mathrm{R})}_{3,2,16}$	0.445	0.139	0.174	0.350	0.447	0.540	0.705	1009	935	1.004
$arepsilon^{({ m R})}_{3,3,16}$	-0.381	0.141	-0.662	-0.479	-0.378	-0.282	-0.117	1157	994	1.002
$arepsilon^{(\mathrm{R})}_{3,4,16}$	0.205	0.143	-0.074	0.107	0.209	0.303	0.472	1147	1076	1.003
$arepsilon^{(\mathrm{R})}_{3,1,17}$	-0.150	0.151	-0.436	-0.252	-0.155	-0.046	0.149	1206	1111	1.001
$arepsilon^{(\mathrm{R})}_{3,2,17}$	-0.264	0.163	-0.580	-0.375	-0.264	-0.162	0.069	1344	1254	0.999
$arepsilon^{(\mathrm{R})}_{3,3,17}$	0.899	0.162	0.582	0.791	0.898	1.005	1.219	1612	1146	1.000
$arepsilon^{(\mathrm{R})}_{3,4,17}$	-1.148	0.180	-1.501	-1.271	-1.141	-1.030	-0.792	1689	1293	1.002
$arepsilon^{(\mathrm{R})}_{3,1,18}$	1.327	0.184	0.972	1.200	1.330	1.444	1.684	1465	1272	1.004
$\varepsilon^{(R)}_{3,2,18}$	-1.224	0.261	-1.746	-1.402	-1.219	-1.052	-0.724	1905	1253	1.003
$\varepsilon_{3,3,18}^{(R)}$	-0.543	0.486	-1.489	-0.863	-0.542	-0.215	0.381	1467	1249	1.003

$arepsilon_{3,4,18}^{(m R)}$	-0.769	0.781	-2.330	-1.297	-0.733	-0.212	0.665	1977	1127	1.003
$arepsilon_{3,1,19}^{(m R)}$	-0.369	0.163	-0.701	-0.480	-0.366	-0.251	-0.076	862	1182	1.003
$\varepsilon^{(R)}_{3,2,19}$	0.100	0.197	-0.266	-0.035	0.090	0.232	0.514	939	1070	1.001
$\varepsilon_{3,3,19}^{(R)}$	-0.272	0.193	-0.664	-0.401	-0.271	-0.142	0.095	1108	1172	1.000
$arepsilon^{(\mathrm{R})}_{3,4,19}$	0.154	0.181	-0.182	0.033	0.150	0.274	0.515	1096	1144	1.001
$arepsilon^{(\mathrm{R})}_{3,1,20}$	0.049	0.187	-0.315	-0.077	0.047	0.174	0.414	914	1038	0.999
$arepsilon^{(\mathrm{R})}_{3,2,20}$	0.016	0.200	-0.373	-0.120	0.010	0.152	0.416	1177	1117	1.000
$\varepsilon^{(R)}_{3,3,20}$	0.360	0.190	-0.003	0.230	0.362	0.488	0.720	897	934	1.000
$arepsilon_{3,4,20}^{(m R)}$	0.359	0.175	0.017	0.238	0.357	0.476	0.701	814	1163	1.000
$arepsilon^{(\mathrm{R})}_{3,1,21}$	0.141	0.151	-0.144	0.041	0.138	0.238	0.442	1003	1032	0.999
$\varepsilon^{(\mathrm{R})}_{3,2,21}$	-0.327	0.159	-0.635	-0.434	-0.322	-0.218	-0.013	1070	946	1.001
$\varepsilon^{(R)}_{3,3,21}$	0.153	0.154	-0.145	0.045	0.151	0.257	0.458	1002	1058	1.001
$\varepsilon^{(R)}_{3,4,21}$	-0.131	0.132	-0.388	-0.221	-0.132	-0.043	0.123	1274	1061	0.999
$arepsilon_{3,1,22}^{(\mathrm{R})}$	0.055	0.166	-0.287	-0.053	0.060	0.165	0.377	1017	1035	1.001
$arepsilon_{3,2,22}^{(\mathrm{R})}$	-0.003	0.191	-0.381	-0.128	-0.008	0.121	0.386	747	1097	1.000
$\varepsilon^{(R)}_{3,3,22}$	-0.371	0.197	-0.744	-0.506	-0.372	-0.238	0.011	911	739	1.001
$arepsilon^{(\mathrm{R})}_{3,4,22}$	0.403	0.193	0.031	0.278	0.393	0.534	0.783	976	994	1.000
$\varepsilon_{3,1,23}^{(R)}$	-0.170	0.179	-0.516	-0.291	-0.168	-0.049	0.188	930	847	1.002

$arepsilon^{(\mathrm{R})}_{3,2,23}$	-0.057	0.183	-0.397	-0.185	-0.061	0.061	0.293	989	1278	1.001
$\varepsilon^{(R)}_{3,3,23}$	0.519	0.166	0.190	0.404	0.518	0.627	0.853	1222	1246	1.000
$\varepsilon^{(R)}_{3,4,23}$	-0.143	0.154	-0.456	-0.243	-0.143	-0.039	0.153	1185	1083	1.001
$\varepsilon^{(R)}_{3,1,24}$	-0.007	0.155	-0.327	-0.106	-0.003	0.098	0.287	992	872	1.002
$\varepsilon^{(\mathrm{R})}_{3,2,24}$	-0.180	0.161	-0.489	-0.289	-0.182	-0.078	0.153	838	1199	1.001
$\varepsilon^{(R)}_{3,3,24}$	-0.366	0.184	-0.737	-0.483	-0.363	-0.235	-0.031	1176	1269	1.001
$\varepsilon^{(R)}_{3,4,24}$	0.538	0.172	0.181	0.428	0.545	0.655	0.861	1108	995	1.002
$\varepsilon^{(R)}_{3,1,25}$	0.130	0.143	-0.151	0.037	0.128	0.225	0.412	1015	985	1.003
$\varepsilon^{(\mathrm{R})}_{3,2,25}$	0.080	0.143	-0.203	-0.010	0.080	0.169	0.361	908	962	1.000
$\varepsilon_{3,3,25}^{(R)}$	-0.165	0.158	-0.477	-0.268	-0.166	-0.060	0.134	881	781	1.000
$\varepsilon^{(R)}_{3,4,25}$	0.037	0.163	-0.279	-0.074	0.038	0.148	0.361	926	1140	1.000
$\varepsilon_{3,1,26}^{(R)}$	0.272	0.148	-0.020	0.169	0.275	0.372	0.574	1104	912	1.004
$\varepsilon^{(\mathrm{R})}_{3,2,26}$	-0.161	0.139	-0.446	-0.253	-0.160	-0.067	0.111	855	1008	1.001
$\varepsilon_{3,3,26}^{(R)}$	0.119	0.154	-0.209	0.017	0.128	0.222	0.404	737	1012	1.003
$\varepsilon_{3,4,26}^{(R)}$	0.326	0.152	0.039	0.229	0.323	0.427	0.640	824	707	0.999
$\varepsilon^{(R)}_{3,1,27}$	-0.286	0.149	-0.586	-0.385	-0.288	-0.184	0.002	783	830	1.004
$\varepsilon^{(R)}_{3,2,27}$	-0.255	0.182	-0.611	-0.376	-0.257	-0.135	0.098	777	982	1.002
$\varepsilon_{3,3,27}^{(R)}$	-0.043	0.225	-0.477	-0.199	-0.039	0.100	0.413	785	911	1.003

${\cal E}_{3,4,27}^{(m R)}$	0.504	0.217	0.079	0.363	0.505	0.652	0.923	835	884	1.001
$arepsilon^{(\mathrm{R})}_{3,1,28}$	-1.168	0.294	-1.730	-1.374	-1.172	-0.953	-0.591	1495	1288	1.002
$arepsilon^{(\mathrm{R})}_{3,2,28}$	-1.273	0.502	-2.313	-1.603	-1.257	-0.923	-0.332	1630	1248	1.003
$arepsilon^{(R)}_{3,3,28}$	-3.092	0.754	-4.571	-3.593	-3.093	-2.561	-1.623	2363	1213	1.000
$arepsilon^{(\mathrm{R})}_{3,4,28}$	-0.027	1.011	-1.889	-0.727	-0.034	0.653	1.937	2201	1092	1.007
$arepsilon^{(R)}_{3,1,29}$	-0.220	0.183	-0.577	-0.343	-0.217	-0.103	0.155	990	990	1.006
$arepsilon^{(R)}_{3,2,29}$	-0.329	0.277	-0.848	-0.516	-0.336	-0.136	0.214	1208	1065	1.001
$\mathcal{E}_{3,3,29}^{(R)}$	0.279	0.260	-0.240	0.100	0.282	0.451	0.796	1095	931	1.002
${\cal E}_{3,4,29}^{({ m R})}$	0.321	0.220	-0.126	0.177	0.323	0.468	0.758	946	1080	1.000
$arepsilon^{(m R)}_{3,1,30}$	-0.540	0.217	-0.945	-0.682	-0.545	-0.395	-0.106	1041	1055	1.006
$\mathcal{E}_{3,2,30}^{(\mathrm{R})}$	-0.037	0.207	-0.440	-0.185	-0.031	0.110	0.355	1249	1084	0.999
$\varepsilon^{(R)}_{3,3,30}$	0.046	0.182	-0.313	-0.072	0.043	0.161	0.419	1741	1254	1.003
${\cal E}_{3,4,30}^{({ m R})}$	-0.044	0.173	-0.384	-0.166	-0.038	0.073	0.286	1424	1058	0.999
$arepsilon^{(\mathrm{R})}_{3,1,31}$	-0.121	0.204	-0.528	-0.262	-0.119	0.009	0.263	1134	1107	1.000
$arepsilon^{(\mathrm{R})}_{3,2,31}$	0.640	0.216	0.219	0.495	0.635	0.780	1.078	1154	1092	1.002
$arepsilon^{(\mathrm{R})}_{3,3,31}$	0.782	0.193	0.393	0.661	0.783	0.908	1.162	1108	934	0.999
$arepsilon^{(R)}_{3,4,31}$	-0.271	0.162	-0.589	-0.381	-0.268	-0.154	0.028	1325	1173	1.003
$\varepsilon^{(R)}_{3,1,32}$	-0.930	0.192	-1.315	-1.057	-0.929	-0.805	-0.542	1274	1173	1.000

$\varepsilon^{(R)}_{3,2,32}$	1.598	0.198	1.214	1.465	1.594	1.731	1.980	1240	1067	1.002
$\mathcal{E}_{3,3,32}^{(R)}$	-1.486	0.228	-1.942	-1.637	-1.489	-1.340	-1.031	1255	1054	1.001
$\varepsilon^{(R)}_{3,4,32}$	1.065	0.240	0.592	0.902	1.066	1.227	1.527	1220	938	1.002
$\varepsilon^{(R)}_{3,1,33}$	-0.601	0.204	-0.997	-0.746	-0.594	-0.459	-0.200	1416	1067	1.003
$\varepsilon^{(R)}_{3,2,33}$	0.786	0.198	0.400	0.657	0.783	0.919	1.175	1310	975	1.000
$\varepsilon^{(R)}_{3,3,33}$	0.454	0.186	0.067	0.330	0.458	0.588	0.797	892	1098	1.002
$arepsilon^{(R)}_{3,4,33}$	-0.337	0.174	-0.659	-0.458	-0.340	-0.218	0.006	876	1096	1.001
$arepsilon^{(R)}_{3,1,34}$	-0.269	0.178	-0.614	-0.380	-0.271	-0.153	0.078	1000	1189	0.999
$arepsilon^{(\mathrm{R})}_{3,2,34}$	0.283	0.185	-0.061	0.155	0.281	0.401	0.664	651	997	1.003
$\mathcal{E}^{(R)}_{3,3,34}$	0.425	0.201	0.031	0.294	0.425	0.555	0.821	606	904	1.005
$arepsilon^{(R)}_{3,4,34}$	0.227	0.196	-0.149	0.085	0.229	0.360	0.606	509	699	1.004
$arepsilon^{(R)}_{3,1,35}$	-0.202	0.188	-0.576	-0.327	-0.205	-0.073	0.173	521	896	1.000
$\varepsilon^{(R)}_{3,2,35}$	-0.206	0.184	-0.574	-0.328	-0.206	-0.081	0.147	665	847	1.001
$\varepsilon^{(R)}_{3,3,35}$	-0.233	0.194	-0.613	-0.364	-0.231	-0.102	0.144	880	999	1.003
$arepsilon^{(R)}_{3,4,35}$	0.613	0.174	0.267	0.498	0.614	0.730	0.959	897	888	1.005
$arepsilon^{(\mathrm{R})}_{3,1,36}$	0.185	0.135	-0.085	0.099	0.190	0.270	0.448	1069	1076	0.999
$\varepsilon^{(R)}_{3,2,36}$	-0.233	0.142	-0.503	-0.331	-0.234	-0.139	0.044	805	1016	1.000
$\mathcal{E}_{3,3,36}^{(R)}$	-0.021	0.162	-0.357	-0.124	-0.018	0.089	0.285	1044	1044	1.001

$\mathcal{E}_{3,4,36}^{(R)}$	-0.321	0.184	-0.708	-0.439	-0.316	-0.197	0.046	835	1052	1.007
$\mathcal{E}_{3,1,37}^{(R)}$	0.463	0.182	0.119	0.345	0.458	0.581	0.833	765	837	1.007
$\epsilon_{3,2,37}^{(R)}$	0.105	0.155	-0.206	0.003	0.107	0.207	0.407	750	885	1.003
$\epsilon_{3,3,37}^{(R)}$	-0.393	0.210	-0.834	-0.528	-0.384	-0.253	0.013	831	1032	1.003
$\varepsilon_{3,4,37}^{(R)}$	0.016	0.271	-0.513	-0.171	0.021	0.192	0.555	786	953	1.002
$\mathcal{E}_{3,1,38}^{(R)}$	0.157	0.320	-0.487	-0.055	0.173	0.377	0.759	815	740	1.001
$\varepsilon_{3,2,38}^{(R)}$	0.917	0.255	0.478	0.737	0.900	1.072	1.481	1025	778	1.001
$\varepsilon_{3,3,38}^{(R)}$	0.026	0.098	-0.174	-0.035	0.027	0.092	0.209	1217	968	1.000
$\mathcal{E}_{3,4,38}^{(R)}$	-0.076	0.115	-0.302	-0.152	-0.072	0.002	0.137	1672	1053	1.002
$\varepsilon_{3,1,39}^{(R)}$	-0.293	0.178	-0.653	-0.410	-0.284	-0.172	0.037	681	1186	1.001
$\varepsilon_{3,2,39}^{(R)}$	0.177	0.212	-0.241	0.034	0.173	0.315	0.603	805	935	1.002
$\varepsilon_{3,3,39}^{(R)}$	-0.035	0.186	-0.399	-0.158	-0.043	0.082	0.350	869	1000	1.002
$\mathcal{E}_{3,4,39}^{(R)}$	0.017	0.169	-0.321	-0.094	0.012	0.129	0.352	812	1055	0.999
$\varepsilon_{3,1,40}^{(R)}$	-0.005	0.175	-0.346	-0.120	-0.021	0.116	0.321	815	819	1.000
$\varepsilon_{3,2,40}^{(R)}$	0.319	0.165	0.002	0.210	0.319	0.423	0.650	830	974	1.001
$\varepsilon_{3,3,40}^{(R)}$	0.256	0.131	0.007	0.170	0.252	0.341	0.519	791	860	1.001
$\varepsilon_{3,4,40}^{(\mathrm{R})}$	-0.097	0.116	-0.319	-0.178	-0.096	-0.022	0.132	751	1071	1.001
$\varepsilon_{3,1,41}^{(R)}$	-0.399	0.142	-0.695	-0.491	-0.390	-0.303	-0.136	1063	974	0.999

$\varepsilon^{(R)}_{3,2,41}$	-0.461	0.188	-0.833	-0.584	-0.460	-0.331	-0.106	967	937	1.004
$\varepsilon^{(R)}_{3,3,41}$	0.414	0.178	0.081	0.291	0.411	0.539	0.773	952	1175	1.000
$arepsilon^{(\mathrm{R})}_{3,4,41}$	0.005	0.157	-0.286	-0.103	0.002	0.108	0.305	1226	1075	1.000
$\varepsilon^{(R)}_{3,1,42}$	-0.215	0.217	-0.651	-0.355	-0.218	-0.066	0.193	918	998	1.003
$\varepsilon^{(R)}_{3,2,42}$	0.955	0.220	0.539	0.801	0.953	1.103	1.383	776	1091	1.003
$\varepsilon^{(R)}_{3,3,42}$	-1.189	0.230	-1.633	-1.343	-1.191	-1.033	-0.735	854	889	1.002
$\varepsilon^{(R)}_{3,4,42}$	1.472	0.209	1.066	1.327	1.479	1.612	1.881	901	1016	0.999
$\varepsilon^{(R)}_{3,1,43}$	-0.022	0.078	-0.174	-0.074	-0.021	0.032	0.124	925	1053	1.000
$\varepsilon^{(R)}_{3,2,43}$	0.108	0.076	-0.039	0.060	0.106	0.157	0.256	931	815	1.002
$\varepsilon^{(R)}_{3,3,43}$	-0.172	0.088	-0.347	-0.230	-0.173	-0.111	-0.006	838	893	1.003
$arepsilon^{(\mathrm{R})}_{3,4,43}$	0.184	0.086	0.014	0.126	0.183	0.236	0.357	802	845	1.001
$arepsilon^{(\mathrm{R})}_{3,1,44}$	0.074	0.071	-0.067	0.027	0.074	0.124	0.210	960	1048	1.000
${\cal E}_{3,2,44}^{(m R)}$	0.083	0.069	-0.057	0.035	0.083	0.131	0.213	701	1010	1.006
$arepsilon^{(\mathrm{R})}_{3,3,44}$	-0.046	0.078	-0.200	-0.098	-0.046	0.007	0.101	573	746	1.006
$arepsilon^{(\mathrm{R})}_{3,4,44}$	-0.133	0.093	-0.306	-0.196	-0.135	-0.068	0.042	526	726	1.004
${\cal E}_{3,1,45}^{(m R)}$	-0.033	0.102	-0.231	-0.100	-0.032	0.034	0.171	604	720	1.003
$arepsilon^{(m R)}_{3,2,45}$	0.109	0.095	-0.079	0.045	0.112	0.169	0.303	754	1073	1.000
$\varepsilon^{(R)}_{3,3,45}$	0.224	0.085	0.063	0.168	0.220	0.278	0.392	806	734	1.000

$\mathcal{E}^{(R)}_{3,4,45}$	-0.044	0.083	-0.212	-0.100	-0.042	0.013	0.123	748	970	1.002
$\varepsilon^{(R)}_{3,1,46}$	-0.354	0.108	-0.560	-0.427	-0.354	-0.281	-0.146	799	991	1.003
$arepsilon^{(R)}_{3,2,46}$	-0.033	0.133	-0.279	-0.118	-0.034	0.053	0.242	726	913	1.012
$arepsilon^{(R)}_{3,3,46}$	0.022	0.147	-0.273	-0.071	0.023	0.117	0.306	904	786	1.005
$\varepsilon^{(R)}_{3,4,46}$	-0.496	0.208	-0.922	-0.624	-0.488	-0.363	-0.105	730	902	1.005
$\varepsilon_{3,1,47}^{(R)}$	-0.077	0.219	-0.510	-0.224	-0.078	0.066	0.363	736	821	1.005
$\varepsilon^{(R)}_{3,2,47}$	-0.208	0.208	-0.623	-0.351	-0.207	-0.075	0.208	943	1055	1.000
$\varepsilon^{(R)}_{3,3,47}$	-0.140	0.255	-0.645	-0.318	-0.134	0.040	0.304	865	1123	1.000
${\cal E}_{3,4,47}^{({ m R})}$	-0.183	0.316	-0.781	-0.396	-0.188	0.037	0.437	999	939	1.001
$\varepsilon^{(R)}_{3,1,48}$	0.509	0.368	-0.231	0.264	0.526	0.763	1.194	1335	1094	1.001
$\varepsilon_{3,2,48}^{(R)}$	-2.289	0.424	-3.120	-2.584	-2.290	-1.999	-1.473	2030	1257	1.000
${\cal E}_{3,3,48}^{({ m R})}$	-0.328	0.880	-2.038	-0.928	-0.314	0.260	1.403	1834	1220	1.001
$\mathcal{E}_{3,4,48}^{(R)}$	-0.308	0.882	-2.103	-0.897	-0.294	0.300	1.407	1694	1162	1.000
Herring catchability										
$\ln q_{2,3,1,1:20}$	-4.922	0.129	-5.166	-5.010	-4.922	-4.836	-4.686	699	983	1.002
$\ln q_{3,3,1,1:48}$	-7.813	0.049	-7.910	-7.847	-7.812	-7.780	-7.720	794	931	1.004
$\ln q_{4,3,2:4,1:48}$	-3.164	0.194	-3.537	-3.292	-3.167	-3.037	-2.788	624	753	1.000
$\ln q_{5,3,2:4,1:48}$	-3.333	0.152	-3.622	-3.436	-3.340	-3.233	-3.020	765	857	1.003

$\ln q_{2,3,2,1:20}$	-3.378	0.132	-3.635	-3.471	-3.380	-3.290	-3.117	723	923	1.000
$\ln q_{2,3,3,1:20}$	0.029	0.049	-0.066	-0.003	0.029	0.062	0.125	3130	1054	1.002
$\ln q_{2,3,4,1:20}$	0.024	0.046	-0.065	-0.007	0.024	0.054	0.113	1980	1276	1.002
$\ln q_{6,3,1:4,1:48}$	-0.027	0.045	-0.114	-0.058	-0.027	0.005	0.062	2440	1194	1.002
$arepsilon_{1,21}^{(q)}$	-0.018	0.045	-0.111	-0.049	-0.018	0.013	0.067	2556	1056	1.002
$arepsilon_{1,22}^{(q)}$	0.000	0.043	-0.084	-0.029	0.001	0.029	0.083	2563	926	1.001
$arepsilon_{1,23}^{(q)}$	0.043	0.044	-0.044	0.013	0.043	0.072	0.128	2254	1181	1.000
$arepsilon_{1,24}^{(q)}$	0.045	0.046	-0.047	0.013	0.045	0.078	0.134	2196	1058	0.999
$arepsilon_{1,25}^{(q)}$	0.061	0.045	-0.027	0.031	0.061	0.094	0.149	2077	1072	1.000
$arepsilon^{(q)}_{1,26}$	0.090	0.043	0.003	0.061	0.089	0.122	0.173	1960	1065	1.000
$arepsilon^{(q)}_{1,27}$	0.155	0.046	0.065	0.125	0.155	0.186	0.245	1798	1083	0.999
$arepsilon_{1,28}^{(q)}$	0.148	0.045	0.058	0.120	0.148	0.178	0.235	2613	1107	1.002
$arepsilon^{(q)}_{1,29}$	0.125	0.045	0.042	0.094	0.123	0.155	0.215	2486	741	1.001
$arepsilon^{(q)}_{1,30}$	0.100	0.047	0.005	0.069	0.100	0.133	0.187	2225	1073	1.001
$\mathcal{E}_{1,31}^{(q)}$	0.051	0.045	-0.038	0.020	0.051	0.080	0.139	2945	1038	1.002
$\mathcal{E}_{1,32}^{(q)}$	0.037	0.049	-0.053	0.001	0.037	0.070	0.130	2643	1143	1.004
$\mathcal{E}_{1,33}^{(q)}$	0.012	0.045	-0.077	-0.020	0.012	0.042	0.100	2375	957	1.007
$arepsilon^{(q)}_{1,34}$	-0.006	0.045	-0.091	-0.038	-0.006	0.026	0.081	2402	1113	1.007

ε	(q) ,35 -0.018	0.044	-0.102	-0.049	-0.018	0.012	0.066	1775	1108	1.000
E	(q) ,36 -0.039	0.044	-0.123	-0.069	-0.038	-0.010	0.051	2709	1089	1.008
E	(q) ,37 -0.155	0.045	-0.242	-0.184	-0.154	-0.125	-0.070	2110	1145	1.003
ε	(q) ,38 -0.061	0.045	-0.149	-0.092	-0.062	-0.030	0.026	2187	1052	1.004
ε	(q) ,39 -0.010	0.046	-0.101	-0.040	-0.011	0.021	0.082	2253	1001	1.004
ε	(q) ,40 0.053	0.048	-0.042	0.021	0.052	0.084	0.147	2134	1069	1.002
ε	-0.030	0.045	-0.118	-0.061	-0.031	0.000	0.058	2492	1067	1.003
ε	(q) ,42 -0.064	0.044	-0.152	-0.091	-0.064	-0.035	0.026	2288	1155	1.001
ε	-0.051	0.044	-0.137	-0.082	-0.052	-0.022	0.035	2088	941	1.001
ε	(q) ,44 0.011	0.045	-0.075	-0.020	0.011	0.041	0.102	2124	930	1.003
ε	(q) ,45 -0.064	0.049	-0.159	-0.098	-0.064	-0.030	0.031	2342	929	1.000
E	(q) .46 -0.005	0.049	-0.100	-0.036	-0.005	0.027	0.089	2129	952	1.001
ε	-0.028	0.049	-0.125	-0.061	-0.029	0.006	0.072	2199	913	1.000
ε	(q) ,48 0.019	0.046	-0.071	-0.013	0.020	0.051	0.107	2619	1191	1.008
E	(q) -0.081	0.044	-0.164	-0.111	-0.081	-0.052	0.008	1771	1134	1.000
E	(q) (,18 0.046	0.043	-0.036	0.016	0.046	0.075	0.130	2599	1253	1.002
E	(q) ,19 0.004	0.046	-0.083	-0.027	0.003	0.035	0.091	1551	1038	1.005
ε	(q) 2,20 -0.014	0.044	-0.095	-0.043	-0.014	0.014	0.076	1630	1094	1.001

ł	$\epsilon_{1,21}^{(q)}$	0.029	0.045	-0.062	0.000	0.028	0.058	0.119	2448	886	1.000
ł	$\epsilon_{1,22}^{(q)}$	0.070	0.049	-0.027	0.038	0.071	0.104	0.162	1998	922	1.000
ł	$\varepsilon_{1,23}^{(q)}$	0.066	0.047	-0.024	0.033	0.065	0.098	0.161	2325	1217	1.001
ł	$\varepsilon_{1,24}^{(q)}$	0.060	0.047	-0.029	0.028	0.059	0.091	0.155	3867	1143	1.000
ł	$\epsilon_{1,25}^{(q)}$	-0.004	0.044	-0.091	-0.032	-0.005	0.024	0.083	2866	1179	1.005
ł	$\varepsilon_{1,26}^{(q)}$	0.031	0.045	-0.056	0.001	0.030	0.060	0.122	2271	1055	1.002
	$\varepsilon_{1,27}^{(q)}$	0.046	0.046	-0.049	0.018	0.045	0.075	0.138	2743	1071	1.007
	$\varepsilon_{1,28}^{(q)}$	-0.035	0.047	-0.128	-0.065	-0.036	-0.004	0.059	2034	1211	1.007
ł	$\varepsilon_{1,29}^{(q)}$	0.006	0.044	-0.079	-0.024	0.006	0.037	0.091	2414	1219	1.003
ł	$\varepsilon_{1,30}^{(q)}$	0.037	0.045	-0.049	0.007	0.037	0.068	0.127	2535	1156	0.999
ł	$\varepsilon_{1,31}^{(q)}$	0.026	0.049	-0.068	-0.008	0.027	0.060	0.124	2321	1179	1.001
	$\varepsilon_{1,32}^{(q)}$	0.072	0.049	-0.022	0.038	0.071	0.108	0.166	1880	1051	1.004
	$\varepsilon_{1,33}^{(q)}$	-0.096	0.048	-0.195	-0.129	-0.094	-0.064	-0.005	2261	1086	1.000
	$\varepsilon_{1,34}^{(q)}$	0.016	0.051	-0.081	-0.018	0.016	0.049	0.117	2342	1146	1.002
ł	$\varepsilon_{1,35}^{(q)}$	-0.080	0.049	-0.176	-0.112	-0.080	-0.049	0.020	2375	839	1.002
	$\varepsilon_{1,36}^{(q)}$	0.000	0.047	-0.095	-0.031	-0.001	0.030	0.094	2020	1003	1.004
ł	$\epsilon_{1,37}^{(q)}$	-0.031	0.046	-0.120	-0.064	-0.031	0.000	0.059	2563	1237	1.003
ł	$\varepsilon^{(q)}_{1,38}$	-0.046	0.049	-0.136	-0.080	-0.046	-0.012	0.050	2756	1148	1.004

$\varepsilon^{(q)}_{1,39}$	0.014	0.046	-0.075	-0.017	0.013	0.045	0.102	3404	1086	1.005
$arepsilon^{(q)}_{1,40}$	0.036	0.045	-0.057	0.006	0.036	0.067	0.130	2176	895	1.001
$arepsilon^{(q)}_{1,41}$	0.067	0.048	-0.024	0.034	0.067	0.102	0.159	2756	972	1.005
$\varepsilon^{(q)}_{1,42}$	0.050	0.045	-0.039	0.018	0.049	0.081	0.139	2067	1042	1.002
$\varepsilon^{(q)}_{1,43}$	-0.031	0.045	-0.119	-0.063	-0.031	0.000	0.057	2043	1069	1.000
$\varepsilon^{(q)}_{1,44}$	-0.013	0.046	-0.104	-0.044	-0.014	0.017	0.076	2574	1131	1.002
$\varepsilon^{(q)}_{1,45}$	0.015	0.049	-0.080	-0.018	0.015	0.048	0.113	2430	1057	1.000
$arepsilon^{(q)}_{1,46}$	-0.066	0.048	-0.160	-0.098	-0.067	-0.034	0.029	2300	1150	1.002
$\varepsilon^{(q)}_{1,47}$	-0.204	0.048	-0.295	-0.238	-0.204	-0.171	-0.113	1810	1139	1.005
$arepsilon^{(q)}_{1,48}$	-0.164	0.046	-0.249	-0.196	-0.163	-0.132	-0.078	2616	943	1.000
$\varepsilon^{(q)}_{2,17}$	-0.051	0.047	-0.143	-0.081	-0.050	-0.019	0.042	2272	1095	0.999
$arepsilon^{(q)}_{2,18}$	-0.013	0.047	-0.104	-0.045	-0.014	0.020	0.080	2508	1214	1.001
$arepsilon^{(q)}_{2,19}$	-0.072	0.049	-0.171	-0.104	-0.073	-0.040	0.029	2200	1051	1.000
$\varepsilon^{(q)}_{2,20}$	-0.050	0.045	-0.140	-0.079	-0.050	-0.021	0.038	2683	994	1.001
$arepsilon^{(q)}_{1,21}$	-0.048	0.044	-0.133	-0.079	-0.047	-0.018	0.037	1970	1012	1.000
$\varepsilon^{(q)}_{1,22}$	0.061	0.045	-0.025	0.029	0.061	0.091	0.150	2268	1151	1.001
$\varepsilon_{1,23}^{(q)}$	0.073	0.045	-0.011	0.042	0.072	0.103	0.166	1790	1064	1.003
$\varepsilon_{1,24}^{(q)}$	0.063	0.045	-0.020	0.033	0.064	0.094	0.147	2192	1334	0.999

$arepsilon^{(q)}_{1,25}$	-0.027	0.046	-0.116	-0.061	-0.028	0.006	0.063	2338	1247	1.001
$arepsilon^{(q)}_{1,26}$	0.036	0.046	-0.053	0.004	0.037	0.068	0.124	2490	936	1.000
$arepsilon^{(q)}_{1,27}$	0.033	0.045	-0.059	0.002	0.033	0.063	0.122	2706	1070	1.004
$arepsilon_{1,28}^{(q)}$	-0.054	0.046	-0.146	-0.085	-0.054	-0.023	0.036	2335	1154	1.001
$arepsilon^{(q)}_{1,29}$	-0.066	0.045	-0.158	-0.095	-0.068	-0.034	0.023	2285	1114	1.006
$arepsilon^{(q)}_{1,30}$	-0.027	0.045	-0.114	-0.057	-0.027	0.005	0.059	2204	1371	1.000
$arepsilon^{(q)}_{1,31}$	0.074	0.046	-0.021	0.041	0.075	0.105	0.165	2154	1097	0.999
$arepsilon^{(q)}_{1,32}$	0.111	0.048	0.015	0.079	0.110	0.145	0.201	1798	984	1.003
$arepsilon^{(q)}_{1,33}$	0.046	0.049	-0.049	0.012	0.047	0.079	0.142	2429	1130	1.005
$\varepsilon^{(q)}_{1,34}$	0.008	0.046	-0.080	-0.023	0.006	0.041	0.098	2346	1089	1.001
$arepsilon^{(q)}_{1,35}$	-0.066	0.047	-0.159	-0.098	-0.067	-0.034	0.024	1982	938	1.002
$arepsilon^{(q)}_{1,36}$	-0.092	0.044	-0.178	-0.121	-0.092	-0.063	-0.003	2176	953	1.010
$arepsilon^{(q)}_{1,37}$	-0.118	0.047	-0.211	-0.149	-0.118	-0.089	-0.022	2142	993	1.001
$arepsilon^{(q)}_{1,38}$	-0.020	0.045	-0.114	-0.050	-0.018	0.011	0.067	2054	1174	0.998
$arepsilon^{(q)}_{1,39}$	0.043	0.045	-0.047	0.015	0.044	0.072	0.133	3281	1126	1.002
$arepsilon^{(q)}_{1,40}$	0.073	0.047	-0.016	0.041	0.072	0.104	0.166	2005	1354	1.000
$arepsilon^{(q)}_{1,41}$	-0.008	0.047	-0.096	-0.040	-0.008	0.024	0.085	2494	1132	1.004
$\varepsilon^{(q)}_{1,42}$	0.139	0.046	0.050	0.108	0.138	0.171	0.231	2394	1285	1.001

$\varepsilon_1^{(}$	0.032	0.048	-0.058	0.001	0.032	0.065	0.125	2512	1049	1.001
$\varepsilon_1^{(}$	0) 44 -0.088	0.048	-0.177	-0.119	-0.088	-0.057	0.007	2102	1089	1.001
$\varepsilon_1^{(}$	0.046	0.049	-0.052	0.013	0.047	0.078	0.147	2183	1106	1.004
$\varepsilon_1^{(}$	-0.038	0.046	-0.132	-0.070	-0.037	-0.005	0.050	2121	1227	1.001
$\varepsilon_1^{(}$	0.004 0.004	0.045	-0.082	-0.026	0.004	0.034	0.093	1589	1043	1.000
$\varepsilon_1^{(}$	0.080	0.045	-0.012	0.051	0.081	0.110	0.168	2291	1037	1.000
$\varepsilon_2^{(}$)) 17 -0.004	0.046	-0.094	-0.035	-0.005	0.028	0.091	2072	964	1.000
$\varepsilon_2^{(}$	-0.069	0.043	-0.154	-0.096	-0.070	-0.041	0.016	1970	969	1.005
$\varepsilon_2^{(}$) 19 -0.087	0.044	-0.172	-0.117	-0.087	-0.056	-0.001	2087	977	0.999
$\varepsilon_2^{(}$) 20 -0.125	0.048	-0.218	-0.155	-0.125	-0.094	-0.030	2594	753	0.999
$\varepsilon_1^{(}$	-0.085	0.046	-0.181	-0.116	-0.087	-0.052	0.005	2375	955	1.001
$\varepsilon_1^{(}$	-0.080	0.043	-0.167	-0.110	-0.080	-0.049	0.002	2415	1182	1.001
$\varepsilon_1^{(}$	0.020	0.043	-0.065	-0.010	0.019	0.050	0.102	2472	1110	0.999
$\varepsilon_1^{(}$	0.026	0.044	-0.062	-0.003	0.025	0.054	0.111	1851	958	1.002
$\varepsilon_1^{(}$	0) 25 -0.118	0.043	-0.200	-0.148	-0.118	-0.089	-0.032	2163	1052	0.999
$\varepsilon_1^{(}$	-0.038	0.043	-0.123	-0.065	-0.037	-0.009	0.043	2389	1033	0.999
$\varepsilon_1^{(}$	-0.038	0.042	-0.119	-0.067	-0.039	-0.008	0.043	2636	1192	1.002
$\varepsilon_1^{(}$	0.011	0.043	-0.074	-0.018	0.011	0.041	0.095	2410	933	1.002

ε	(q) .,29 -0.00	0.04	-0.087	7 -0.036	-0.005	0.025	0.081	2127	1172	1.002
ε	(q) 1,30 0.00	07 0.04	-0.084	4 -0.026	0.005	0.037	0.095	1896	1112	1.002
ε	(q) -0.00	9 0.04	-0.103	3 -0.040	-0.010	0.023	0.082	1603	1014	1.002
ε	(q) 1,32 0.04	5 0.04	-0.046	6 0.012	0.045	0.077	0.135	2216	1185	1.002
ε	(q) 1,33 0.04	9 0.04	-0.033	3 0.029	0.059	0.089	0.148	2045	1101	1.005
ε	(q) 1,34 0.04	3 0.04	-0.046	6 0.013	0.041	0.074	0.127	2268	1232	0.999
ε	(q) 1,35 -0.06	4 0.04	-0.154	4 -0.092	-0.063	-0.035	0.019	2198	1225	1.000
ε	(q) -0.01	6 0.04	-0.098	8 -0.044	-0.015	0.013	0.065	2018	1101	1.002
ε	(q) 1,37 0.00	06 0.04	4 -0.076	6 -0.024	0.007	0.037	0.092	2340	1128	1.001
ε	(q) -0.01	4 0.04	4 -0.103	3 -0.043	-0.014	0.017	0.069	2187	1337	1.002
ε	(q) 1,39 -0.02	5 0.04	-0.120	-0.056	-0.025	0.005	0.067	2420	1035	1.001
ε	(q) (,40 0.14	6 0.04	6 0.059	9 0.115	0.145	0.175	0.241	2251	889	1.000
ε	(q) 0.13	1 0.04	6 0.039	9 0.101	0.132	0.162	0.220	2130	1276	1.001
E	(q) 4,42 0.05	1 0.04	-0.040	0.019	0.053	0.081	0.140	1953	1221	1.003
E	(q) 4,43 -0.09	0.04	-0.189	9 -0.129	-0.097	-0.067	-0.006	2076	1093	1.000
E	(q) 4,44 0.04	2 0.04	-0.052	2 0.010	0.043	0.074	0.136	2395	899	1.004
E	(q) 4,45 -0.01	1 0.04	-0.108	8 -0.043	-0.009	0.021	0.079	2134	1117	1.003
ε	(q) 4,46 -4.92	2 0.12	.9 -5.166	6 -5.010	-4.922	-4.836	-4.686	699	983	1.002

$arepsilon^{ m (q)}_{4,47}$	-7.813	0.049	-7.910	-7.847	-7.812	-7.780	-7.720	794	931	1.004
$arepsilon^{(\mathrm{q})}_{4,48}$	-3.164	0.194	-3.537	-3.292	-3.167	-3.037	-2.788	624	753	1.000
Herring selectivity										
$\ln s_{1,3,1,8:19}^{(50\%)}$	1.384	0.038	1.311	1.359	1.382	1.410	1.458	584	690	1.005
$\ln s_{1,3,2,8:19}^{(50\%)}$	2.155	0.133	1.907	2.062	2.153	2.244	2.414	763	919	1.002
$\ln s_{1,3,3,8:19}^{(50\%)}$	1.399	0.024	1.351	1.383	1.399	1.415	1.447	777	1068	1.003
$\ln s_{1,3,4,8:19}^{(50\%)}$	1.518	0.028	1.461	1.501	1.519	1.537	1.569	596	646	0.999
$\ln s_{1,3,1,20:34}^{(50\%)}$	1.457	0.024	1.410	1.441	1.457	1.472	1.504	829	928	1.002
$\ln s_{1,3,2,20:34}^{(50\%)}$	1.503	0.024	1.457	1.487	1.503	1.519	1.547	939	1057	0.999
$\ln s_{1,3,3,20:34}^{(50\%)}$	1.512	0.020	1.475	1.499	1.512	1.525	1.552	971	961	1.000
$\ln s_{1,3,4,20:34}^{(50\%)}$	1.651	0.018	1.617	1.640	1.651	1.664	1.687	840	821	1.004
$\ln s_{1,3,1,35:48}^{(50\%)}$	1.829	0.030	1.770	1.808	1.830	1.850	1.889	1086	1216	1.001
$\ln s_{1,3,2,35:48}^{(50\%)}$	1.566	0.018	1.530	1.554	1.566	1.578	1.599	858	1104	0.999
$\ln s_{1,3,3,35:48}^{(50\%)}$	1.672	0.018	1.638	1.660	1.672	1.684	1.706	982	958	1.004
$\ln s_{1,3,4,35:48}^{(50\%)}$	1.727	0.013	1.700	1.718	1.727	1.736	1.753	985	1172	1.003
$\ln s_{2,3,1,8:34}^{(50\%)}$	1.814	0.033	1.755	1.791	1.812	1.837	1.882	669	650	1.003
$\ln s_{2,3,2,8:34}^{(50\%)}$	2.035	0.048	1.952	2.002	2.032	2.065	2.138	634	699	1.005
$\ln s^{(50\%)}_{2,3,3,8:34}$	1.784	0.030	1.724	1.764	1.784	1.805	1.845	640	911	1.002

$\ln s^{(50\%)}_{2,3,4,8:34}$	1.964	0.033	1.903	1.941	1.962	1.985	2.032	776	1092	1.005
$\ln s^{(50\%)}_{2,3,1,35:48}$	1.742	0.019	1.704	1.730	1.742	1.755	1.781	1095	1146	1.000
$\ln s^{(50\%)}_{2,3,2,35:48}$	1.866	0.018	1.833	1.854	1.866	1.877	1.902	639	921	1.000
$\ln s^{(50\%)}_{2,3,3,35:48}$	1.808	0.015	1.777	1.798	1.808	1.818	1.838	871	1200	1.001
$\ln s^{(50\%)}_{2,3,4,35:48}$	1.822	0.016	1.789	1.812	1.822	1.833	1.856	879	1070	1.000
$\ln s^{(50\%)}_{3,3,1:4,1:7}$	1.193	0.144	0.909	1.103	1.195	1.296	1.453	571	824	1.003
$\ln(s_{1,3,1,8:19}^{(95\%)} - s_{1,3,1,8:19}^{(50\%)})$	2.084	0.112	1.846	2.010	2.093	2.165	2.276	805	958	1.001
$\ln(s_{1,3,2,8:19}^{(95\%)} - s_{1,3,2,8:19}^{(50\%)})$	-0.333	0.071	-0.471	-0.379	-0.335	-0.286	-0.197	879	1048	1.002
$\ln(s_{1,3,3,8:19}^{(95\%)} - s_{1,3,3,8:19}^{(50\%)})$	0.204	0.070	0.064	0.157	0.205	0.251	0.334	749	897	1.001
$\ln(s_{1,3,4,8:19}^{(95\%)} - s_{1,3,4,8:19}^{(50\%)})$	0.186	0.065	0.057	0.144	0.186	0.230	0.309	1040	965	1.000
$\ln(s_{1,3,1,20:34}^{(95\%)} - s_{1,3,1,20:34}^{(50\%)})$	0.011	0.060	-0.109	-0.032	0.013	0.052	0.126	1084	808	1.002
$\ln(s_{1,3,2,20:34}^{(95\%)} - s_{1,3,2,20:34}^{(50\%)})$	-0.424	0.077	-0.575	-0.475	-0.422	-0.372	-0.270	972	1024	1.002
$\ln(s_{1,3,3,20:34}^{(95\%)} - s_{1,3,3,20:34}^{(50\%)})$	0.164	0.049	0.069	0.132	0.163	0.196	0.264	756	996	1.004
$\ln(s_{1,3,4,20:34}^{(95\%)} - s_{1,3,4,20:34}^{(50\%)})$	0.856	0.063	0.734	0.812	0.858	0.900	0.974	1315	1314	1.001
$\ln(s_{1,3,1,35:48}^{(95\%)} \cdot s_{1,3,1,35:48}^{(50\%)})$	0.032	0.052	-0.067	-0.004	0.033	0.067	0.131	1167	1236	0.999
$\ln(s_{1,3,2,35:48}^{(95\%)} \cdot s_{1,3,2,35:48}^{(50\%)})$	-0.117	0.050	-0.214	-0.151	-0.117	-0.082	-0.021	1190	1238	1.004
$\ln(s_{1,3,3,35:48}^{(95\%)} - s_{1,3,3,35:48}^{(50\%)})$	-0.070	0.039	-0.146	-0.095	-0.070	-0.044	0.005	1091	1169	1.001
$\ln(s_{1,3,4,35:48}^{(95\%)} - s_{1,3,4,35:48}^{(50\%)})$	0.909	0.094	0.735	0.847	0.904	0.970	1.101	815	748	1.002

$\ln(s^{(95\%)}_{2,3,1,8:34}\text{-}s^{(50\%)}_{2,3,1,8:34})$	1.040	0.084	0.879	0.984	1.040	1.096	1.202	891	699	1.004
$\ln(s^{(95\%)}_{2,3,2,8:34}\text{-}s^{(50\%)}_{2,3,2,8:34})$	0.692	0.090	0.511	0.635	0.691	0.752	0.878	710	994	1.001
$\ln(s^{(95\%)}_{2,3,3,8:34}\text{-}s^{(50\%)}_{2,3,3,8:34})$	0.952	0.077	0.806	0.899	0.951	1.004	1.102	1092	1170	1.003
$\ln(s^{(95\%)}_{2,3,4,8:34}\text{-}s^{(50\%)}_{2,3,4,8:34})$	0.380	0.070	0.242	0.333	0.379	0.425	0.517	1330	1196	1.001
$\ln(s^{(95\%)}_{2,3,1,35:48}\text{-}s^{(50\%)}_{2,3,1,35:48})$	0.124	0.047	0.036	0.093	0.123	0.155	0.221	899	770	1.003
$\ln(s^{(95\%)}_{2,3,2,35:48}\text{-}s^{(50\%)}_{2,3,2,35:48})$	0.160	0.050	0.065	0.126	0.159	0.195	0.254	1095	1074	1.001
$\ln(s^{(95\%)}_{2,3,3,35:48}\text{-}s^{(50\%)}_{2,3,3,35:48})$	0.123	0.053	0.019	0.088	0.121	0.160	0.228	1085	1175	1.001
$\ln(s^{(95\%)}_{2,3,4,35:48}\text{-}s^{(50\%)}_{2,3,4,35:48})$	1.384	0.038	1.311	1.359	1.382	1.410	1.458	584	690	1.005
$\ln(s^{(95\%)}_{3,3,1:4,1:7}\text{-}s^{(50\%)}_{6,3,1:4,1:7})$	2.155	0.133	1.907	2.062	2.153	2.244	2.414	763	919	1.002
Herring natural mortality										
$\varepsilon_2^{(M,h1)}$	-0.067	0.023	-0.113	-0.083	-0.067	-0.051	-0.022	1789	1113	1.003
$\varepsilon_3^{(M,h1)}$	-0.072	0.024	-0.118	-0.088	-0.072	-0.056	-0.024	1768	1114	1.001
$\varepsilon_4^{(M,h1)}$	-0.097	0.023	-0.142	-0.112	-0.097	-0.081	-0.051	2508	1205	1.004
$\varepsilon_5^{(M,h1)}$	-0.114	0.024	-0.165	-0.130	-0.114	-0.099	-0.064	2177	928	0.999
$\varepsilon_6^{(M,h1)}$	-0.111	0.023	-0.160	-0.126	-0.111	-0.096	-0.065	2267	1087	1.003
$\varepsilon_7^{(M,h1)}$	-0.079	0.024	-0.125	-0.097	-0.079	-0.063	-0.033	2531	1224	1.006
$\varepsilon_8^{(M,h1)}$	-0.030	0.024	-0.076	-0.047	-0.029	-0.012	0.017	1987	1087	1.009
$\varepsilon_9^{(M,h1)}$	0.006	0.024	-0.041	-0.009	0.006	0.022	0.051	2236	1035	1.002

$\varepsilon_{10}^{(M,h1)}$	0.022	0.024	-0.023	0.006	0.022	0.039	0.068	1883	1253	1.000
$arepsilon^{(M,h1)}_{11}$	0.022	0.024	-0.027	0.005	0.023	0.039	0.069	2512	1275	1.002
$\varepsilon_{12}^{(M,h1)}$	0.019	0.024	-0.027	0.002	0.019	0.034	0.063	2527	1207	1.004
$\varepsilon_{13}^{(M,h1)}$	0.010	0.025	-0.037	-0.008	0.010	0.028	0.058	2764	909	1.000
$arepsilon_{14}^{(\mathrm{M,h1})}$	-0.013	0.025	-0.061	-0.030	-0.013	0.004	0.036	1940	1063	1.005
$\varepsilon_{15}^{(\mathrm{M,h1})}$	-0.024	0.025	-0.072	-0.041	-0.024	-0.008	0.027	2428	1085	1.003
$\varepsilon_{16}^{(M,h1)}$	-0.026	0.025	-0.075	-0.043	-0.026	-0.009	0.023	2700	1025	1.000
$\varepsilon_{17}^{(\mathrm{M,h1})}$	-0.022	0.025	-0.071	-0.039	-0.022	-0.006	0.029	2315	1058	1.009
$\varepsilon_{18}^{(\mathrm{M,h1})}$	-0.025	0.025	-0.074	-0.042	-0.025	-0.008	0.023	2226	1312	1.001
$\varepsilon_{19}^{(M,h1)}$	-0.028	0.024	-0.077	-0.045	-0.029	-0.012	0.022	1653	965	1.004
$\varepsilon_{20}^{(M,h1)}$	-0.025	0.026	-0.076	-0.042	-0.024	-0.008	0.027	3268	1040	0.999
$\varepsilon_{21}^{(M,h1)}$	-0.017	0.024	-0.063	-0.034	-0.017	-0.001	0.030	3017	1095	0.999
$\varepsilon_{22}^{(M,h1)}$	-0.013	0.024	-0.060	-0.029	-0.013	0.004	0.035	3060	1164	0.999
$\varepsilon_{23}^{(M,h1)}$	-0.017	0.024	-0.063	-0.033	-0.017	-0.001	0.029	3440	965	1.002
$\varepsilon_{24}^{(\mathrm{M,h1})}$	-0.027	0.025	-0.074	-0.043	-0.027	-0.010	0.022	2772	1075	1.000
$\varepsilon_{25}^{(\mathrm{M,h1})}$	-0.026	0.024	-0.075	-0.042	-0.026	-0.009	0.020	2435	937	1.001
$\varepsilon_{26}^{(M,h1)}$	-0.017	0.023	-0.061	-0.032	-0.018	-0.001	0.028	3409	1229	1.001
$arepsilon_{27}^{(M,h1)}$	-0.011	0.024	-0.058	-0.028	-0.011	0.006	0.036	2220	1211	1.006
$\varepsilon_{28}^{(\mathrm{M,h1})}$	-0.009	0.025	-0.057	-0.026	-0.008	0.009	0.039	2377	1006	1.003
--------------------------------------	--------	-------	--------	--------	--------	-------	-------	------	------	-------
$\varepsilon_{29}^{(\mathrm{M,h1})}$	-0.011	0.025	-0.060	-0.028	-0.011	0.006	0.037	2124	1176	1.001
$\varepsilon_{30}^{(M,h1)}$	-0.011	0.024	-0.060	-0.028	-0.011	0.004	0.036	2637	918	1.003
$\varepsilon_{31}^{(M,h1)}$	-0.005	0.026	-0.052	-0.022	-0.006	0.011	0.047	2310	1214	1.004
$\varepsilon_{32}^{(M,h1)}$	-0.001	0.024	-0.049	-0.018	-0.001	0.015	0.047	2726	1160	1.004
$\varepsilon_{33}^{(\mathrm{M,h1})}$	0.001	0.025	-0.048	-0.016	0.000	0.018	0.051	2346	1057	1.002
$arepsilon_{34}^{(\mathrm{M,h1})}$	-0.001	0.024	-0.047	-0.018	-0.001	0.016	0.045	2084	1099	1.000
$\varepsilon_{35}^{(\mathrm{M,h1})}$	0.000	0.025	-0.045	-0.018	0.000	0.018	0.047	2405	1275	1.002
$\varepsilon_{36}^{(M,h1)}$	0.006	0.025	-0.041	-0.011	0.006	0.023	0.056	2163	952	0.999
$\varepsilon_{37}^{(\mathrm{M,h1})}$	0.008	0.025	-0.040	-0.009	0.008	0.025	0.055	2738	1053	1.004
$\varepsilon_{38}^{(\mathrm{M,h1})}$	0.008	0.025	-0.040	-0.009	0.008	0.025	0.056	2136	1106	1.000
$\varepsilon_{39}^{(\mathrm{M,h1})}$	0.001	0.024	-0.046	-0.016	0.001	0.019	0.048	2468	1137	1.000
$arepsilon_{40}^{(\mathrm{M,h1})}$	0.001	0.024	-0.047	-0.015	0.002	0.017	0.048	2468	955	0.999
$\varepsilon_{41}^{(\mathrm{M,h1})}$	0.005	0.024	-0.043	-0.012	0.005	0.021	0.052	1763	993	1.001
$arepsilon^{(M,h1)}_{42}$	0.007	0.025	-0.041	-0.010	0.007	0.023	0.057	2189	1076	1.000
$arepsilon^{(M,h1)}_{43}$	0.011	0.024	-0.035	-0.005	0.011	0.028	0.058	2442	1115	1.002
$arepsilon^{(M,h1)}_{44}$	0.014	0.025	-0.036	-0.002	0.014	0.031	0.063	2340	1124	1.004
$\mathcal{E}_{45}^{(\mathrm{M,h1})}$	0.016	0.025	-0.033	-0.002	0.017	0.033	0.064	1859	1282	1.000

$arepsilon_{46}^{(\mathrm{M,h1})}$	0.016	0.025	-0.030	0.000	0.016	0.032	0.067	2434	1145	1.000
$arepsilon^{(M,h1)}_{47}$	0.008	0.024	-0.040	-0.008	0.007	0.024	0.052	2063	892	1.001
$arepsilon^{(\mathrm{M,h1})}_{48}$	0.002	0.025	-0.046	-0.015	0.002	0.019	0.052	3228	952	1.002
$\varepsilon_2^{(M,h2)}$	0.260	0.017	0.227	0.248	0.259	0.271	0.292	1523	1172	1.003
$\varepsilon_3^{(M,h2)}$	0.191	0.019	0.153	0.178	0.191	0.203	0.227	1202	1083	1.003
$arepsilon_4^{(\mathrm{M,h2})}$	0.117	0.020	0.078	0.104	0.117	0.130	0.158	1596	1094	1.002
$\varepsilon_5^{(M,h2)}$	0.016	0.019	-0.023	0.003	0.016	0.028	0.055	1865	997	1.001
$\varepsilon_6^{(M,h2)}$	-0.109	0.019	-0.148	-0.121	-0.108	-0.095	-0.071	1626	1022	0.999
$\varepsilon_7^{(M,h2)}$	-0.083	0.019	-0.120	-0.095	-0.083	-0.069	-0.047	1609	1166	1.001
$\varepsilon_8^{(M,h2)}$	0.087	0.021	0.047	0.074	0.086	0.101	0.128	1522	926	1.002
$\varepsilon_9^{(M,h2)}$	0.015	0.022	-0.027	0.000	0.016	0.030	0.059	1939	1101	1.002
$\varepsilon_{10}^{(M,h2)}$	-0.060	0.022	-0.103	-0.074	-0.060	-0.045	-0.016	2379	1133	1.000
$\varepsilon_{11}^{(M,h2)}$	-0.099	0.022	-0.142	-0.113	-0.099	-0.084	-0.056	2373	1226	1.001
$\varepsilon_{12}^{(M,h2)}$	-0.111	0.023	-0.157	-0.126	-0.111	-0.096	-0.062	2230	1091	1.003
$\varepsilon_{13}^{(M,h2)}$	-0.097	0.023	-0.140	-0.111	-0.097	-0.081	-0.054	2065	1127	1.003
$\varepsilon_{14}^{(\mathrm{M,h2})}$	-0.049	0.022	-0.092	-0.064	-0.049	-0.034	-0.004	2352	1253	1.000
$\varepsilon_{15}^{(M,h2)}$	-0.018	0.023	-0.065	-0.033	-0.018	-0.003	0.029	2462	1103	1.000
$arepsilon_{16}^{(M,h2)}$	-0.001	0.023	-0.046	-0.016	0.000	0.015	0.044	1945	1042	1.002

$\varepsilon_{17}^{(\mathrm{M,h2})}$	0.003	0.023	-0.043	-0.013	0.003	0.019	0.049	2379	953	1.001
$\varepsilon_{18}^{(\mathrm{M,h2})}$	0.005	0.023	-0.038	-0.010	0.006	0.020	0.048	2209	1315	0.999
$\varepsilon_{19}^{(\mathrm{M,h2})}$	0.010	0.023	-0.034	-0.005	0.009	0.026	0.054	1896	1280	1.000
$\varepsilon_{20}^{(\mathrm{M,h2})}$	0.014	0.023	-0.032	-0.003	0.014	0.030	0.061	2337	1283	1.002
$\varepsilon_{21}^{(M,h2)}$	0.009	0.023	-0.037	-0.006	0.009	0.024	0.056	2489	1191	1.003
$\varepsilon_{22}^{(\mathrm{M,h2})}$	0.005	0.023	-0.038	-0.011	0.005	0.021	0.048	1989	1289	1.002
$\varepsilon_{23}^{(\mathrm{M,h2})}$	0.012	0.023	-0.031	-0.003	0.013	0.028	0.059	2191	1213	0.999
$arepsilon_{24}^{(\mathrm{M,h2})}$	0.039	0.023	-0.004	0.023	0.039	0.055	0.085	1967	1307	1.001
$arepsilon_{25}^{(\mathrm{M,h2})}$	0.045	0.022	-0.001	0.031	0.045	0.060	0.087	2309	918	1.003
$\varepsilon_{26}^{(\mathrm{M,h2})}$	0.041	0.022	-0.003	0.026	0.041	0.056	0.086	2122	1115	1.000
$\varepsilon_{27}^{(\mathrm{M,h2})}$	0.030	0.022	-0.014	0.016	0.030	0.045	0.073	2115	982	1.008
$\varepsilon_{28}^{(\mathrm{M,h2})}$	0.007	0.022	-0.036	-0.007	0.007	0.021	0.049	1621	981	1.008
$\varepsilon_{29}^{(\mathrm{M,h2})}$	-0.003	0.023	-0.048	-0.017	-0.004	0.011	0.043	2162	926	1.002
$\varepsilon_{30}^{(\mathrm{M,h2})}$	0.010	0.023	-0.038	-0.006	0.009	0.027	0.055	1713	1135	1.001
$\varepsilon_{31}^{(M,h2)}$	0.002	0.021	-0.039	-0.013	0.002	0.016	0.045	1621	1230	1.001
$\varepsilon_{32}^{(\mathrm{M,h2})}$	-0.005	0.022	-0.048	-0.020	-0.006	0.009	0.037	2002	1173	0.999
$\varepsilon_{33}^{(\mathrm{M,h2})}$	0.009	0.023	-0.036	-0.008	0.009	0.024	0.052	1987	1277	1.002
$\mathcal{E}_{34}^{(\mathrm{M,h2})}$	0.026	0.022	-0.017	0.011	0.027	0.041	0.069	1856	1088	1.003

$\varepsilon_{35}^{(M,h2)}$	0.043	0.022	-0.001	0.028	0.043	0.058	0.086	1843	1192	1.004
$arepsilon_{36}^{(\mathrm{M,h2})}$	0.045	0.022	0.002	0.030	0.045	0.060	0.088	1733	1110	1.001
$arepsilon_{37}^{(\mathrm{M,h2})}$	0.028	0.022	-0.014	0.013	0.028	0.043	0.071	1837	1109	1.006
$\varepsilon_{38}^{(M,h2)}$	0.016	0.022	-0.026	0.000	0.016	0.031	0.059	2088	1282	1.003
$arepsilon_{39}^{(\mathrm{M,h2})}$	0.017	0.022	-0.025	0.002	0.016	0.031	0.059	2237	1215	1.007
$\varepsilon_{40}^{(\mathrm{M,h2})}$	0.014	0.021	-0.026	0.000	0.014	0.028	0.056	1576	1257	1.005
$arepsilon_{41}^{(\mathrm{M,h2})}$	-0.004	0.021	-0.048	-0.016	-0.004	0.010	0.035	2059	1069	1.001
$arepsilon_{42}^{(\mathrm{M,h2})}$	-0.011	0.021	-0.053	-0.026	-0.011	0.003	0.032	2181	1168	1.003
$arepsilon^{(M,h2)}_{43}$	0.003	0.022	-0.039	-0.012	0.003	0.019	0.045	2771	1111	1.001
$arepsilon_{44}^{(\mathrm{M,h2})}$	0.025	0.022	-0.017	0.009	0.025	0.040	0.070	2098	1128	1.002
$arepsilon^{(M,h2)}_{45}$	0.026	0.023	-0.017	0.011	0.027	0.041	0.070	2249	989	1.004
$arepsilon_{46}^{(\mathrm{M,h2})}$	-0.002	0.023	-0.046	-0.018	-0.002	0.015	0.045	1641	1190	1.005
$arepsilon^{(M,h2)}_{47}$	-0.012	0.023	-0.057	-0.027	-0.012	0.002	0.032	3315	962	0.999
$\varepsilon_{48}^{(M,h2)}$	-0.008	0.026	-0.058	-0.026	-0.008	0.010	0.043	2585	963	1.002

Table S5.2.	Chain-specific	diagnostics f	for the i	fitted MICE.
		G	,	

Chain #	Warmup runtime	Sampling runtime	E-BFMI	
	(seconds)	(seconds)		
1	34944	28153	0.9303339	
2	33851	30613	0.9877990	
3	33730	28142	0.9922443	

Table S5.3. Post-fitted cod stock-recruitment parameter estimates. β_0 represents fecundity while β_c and β_H represent the effect of cod and herring biomass, respectively, on cod recruitment.

Parameter	Pos	terior quant	iles
	2.5%	50%	97.5%
β_0	4.62	6.80	10.06
β_{C}	1.30E-03	1.93E-03	2.67E-03
β_H	2.57E-03	3.41E-03	4.25E-03

Table S5.4. Post-fitted functional response parameter estimates. η , h, and λ represent the encounter rate, handling time, and shape of the functional response, respectively.

Predator	Par.	Prey	Po	osterior quantiles	
			2.5%	50%	97.5%
Seal, Shelf-M	η	Cod	1.72E+01	2.61E+02	4.26E+05
		Herring	6.07E+00	1.23E+02	1.45E+05
	h	Cod	3.64E+02	8.92E+03	1.69E+07
		Herring	5.51E-09	5.48E+00	1.79E+04
	λ	Cod	2.96E-05	4.96E-02	1.79E-01
		Herring	1.40E-09	5.03E-03	1.69E-01
Seal, Shelf-F	η	Cod	3.89E-01	8.16E+01	8.59E+08
		Herring	6.09E-01	1.38E+02	1.09E+09
	h	Cod	5.70E-03	2.38E+03	1.14E+09
		Herring	3.49E-11	3.19E+02	1.51E+08
	λ	Cod	1.51E-07	4.94E-02	4.06E-01
		Herring	8.96E-10	1.37E-02	7.42E-01
Seal, Gulf-M	η	Cod	3.20E+01	3.23E+02	5.77E+06
		Herring	1.30E+01	1.18E+02	2.32E+06
	h	Cod	4.39E-01	1.47E+02	2.93E+05
		Herring	8.37E-01	7.85E+01	2.16E+05
	λ	Cod	1.78E-08	4.86E-02	1.60E-01
		Herring	5.72E-07	1.67E-02	1.66E-01

Seal, Gulf-F	η	Cod	9.85E+00	1.27E+02	1.74E+07
		Herring	1.80E+01	2.51E+02	2.75E+07
	h	Cod	6.50E-04	9.90E+01	2.67E+05
		Herring	9.53E-01	4.36E+02	7.04E+07
	λ	Cod	1.53E-07	3.92E-02	1.72E-01
		Herring	2.77E-11	5.79E-03	1.84E-01
Cod	η	Herring	3.43E-15	3.18E-08	1.05E+00
	h	Herring	6.57E-15	3.52E-09	5.52E+00
	λ	Herring	2.48E-01	2.70E+00	5.62E+00
		1			

Figure S5.1. Model fits (grey points) to observed grey seal pregnancy rates (circles) for years with more than 15 observations.

Figure S5.2. Residuals between the observed proportions-at-age in the cod abundance indices and the model-estimated proportions. Residuals (estimated - observed) are proportional to circle radii.

Figure S5.3. Residuals between the observed proportions-at-age in the herring abundance indices and the model-estimated proportions. Residuals (estimated - observed) are proportional to circle radii. Black circles denote positive residuals.

Figure S5.4. Posterior correlation between pairs of parameters. Due to the large number of parameters, we omit parameters that do not have a correlation coefficient greater than 0.65 or less than -0.65 with at least one other parameter.