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TEXT S1: Tag Data Filtering 

Filtering included the removal of detections collected within the first 24 hrs of deployment to 
avoid confounding effects associated with tagging. Near-simultaneous detections at multiple 
receivers (i.e., < 5 s apart) were then aggregated into a single record. Consecutive detections from the 
same transmitter that occurred more frequently than the minimum transmission interval (i.e., < 60 
sec) were also removed. Filtered acceleration and depth data were then paired based on the 
understanding that the tags transmit depth and acceleration at alternating intervals. To accomplish 
this, the two data sets were merged and ordered by time of detection. An R script was then used to 
recursively inspect the detections one-by-one to confirm that the type (i.e., acceleration or depth) 
alternated, the tag serial numbers matched, and detections were recorded within the maximum 
transmission interval (i.e., < 180 s). If consecutive detections met those rules, they were considered 
pairs and appended to a new dataset with temporally matched environmental data (i.e., AWAC, 
satellite, buoy data, and UNSO). Those detections that did not match were excluded from analysis.  
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Fig. S1 Space use of individual goliath grouper. Black triangles are acoustic receivers, while space 
use is represented by utilization distributions. 
 

 
Fig. S2 Time series of bottom water temperature (blue line, measured by ADCP) and estimated sea 
surface temperature (black line, VIIRS) for 2020 and 2021 study periods. 
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TEXT S2: Hidden Markov models 

An N -state hidden Markov model (HMM) is a doubly stochastic process composed of: (1) an 
observable state-dependent process, denoted by {𝑋!}!"#$ , and (2) a (hidden) state process denoted by  
{𝑆!}!"#$  (Zucchini et al. 2017). The observations are taken to be conditionally independent and 
generated according to a set of state-dependent distributions,	{𝑓(𝑋!|𝑆! = 𝑛)}%"#& , and the states are 
taken to evolve over time according to a first-order N-state Markov chain with transition probability 
matrix (t.p.m.) 𝚪, with entries 𝛾'( = Pr(𝑆! = 𝑗	| 𝑆!)# = 𝑖) for 𝑖, 𝑗 ∈ {1, … , 𝑁}. Lastly, the state at time 
𝑡 = 1 is taken to be generated according to the initial state distribution 𝜹, with entries 𝛿% = Pr	(𝑆# =
𝑛), for 𝑛 ∈ {1,… ,𝑁}. In ecology, it is often of interest to understand how the probability of switching 
across states varies according to a set of covariates, e.g. time of day, temperature. We can reformulate 
the entries of the t.p.m. and write them in the following manner: 

 
where 𝛼'( is assumed to be a constant in our baseline model, and 𝛼'' = 0, but later we will reformulate 
the transition probability to be a function of the environmental covariates of interest. 

The diagonal entries of the transition probability matrix, suggest a tendency of the goliath 
groupers to continue in its current state, while the off-diagonal entries are equally informative, 
representing the probability of state change. 

Our HMM analysis starts with a baseline HMM that assumes constant transition probabilities 
between states (Eq. (1)). Extending upon the baseline model, the full model integrates environmental 
covariates by allowing the transition probabilities to be time-varying (Leos-Barajas et al. 2016). 
Specifically, the transition probability from state i to state j at time t is reformulated to be a function 
of the environment covariates, 

 

On the right hand of the equation, the parameters 𝛼'(represent the baseline log-odds of the 
transition, 𝛽'(

$!$\beta_{ij}^Ti$ $\beta_{ij}^D$, $\beta_{ij}^T$, $\beta_{ij}^C$, and $\beta_{ij}^L$ 
are the coefficients quantifying the influence of each environmental covariates on the transition 
probability matrix entries at time . By applying the traditional model selection technique, Akaike 
information criterion (AIC) to these different models, we will select the one with the smallest AIC. 
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Analysis 

We used R (R Core Team 2022) to conduct the analysis and package momentuHMM (McClintock and 
Michelot 2018) to fit the hidden Markov model (HMM). To prepare our data for HMM, we conducted several 
essential adjustments to our data. This included the removal of duplicated sensor values and addressing missing 
data points. Notably, anomalies were observed in the data streams for Grouper 10410, leading us to conclude 
that its transmitter was lost. Consequently, we excluded this grouper from our analysis to maintain data 
integrity. Besides, we standardized our acoustic transmitter data stream to adhere to the regular time interval 
required by hidden Markov models. Given the irregular nature of the original data, we employed smoothing 
techniques, averaging data points within 10-minute intervals. This approach was selected after experimenting 
with various intervals ranging from 5 to 20 minutes. The 10-minute interval strikes a balance between 
providing an appropriate time range and generating sufficient data points to capture the essence of the data 
features, including data frequency and time interval characteristics. Lastly, we ordered the dataset by grouper 
ID and the collected dates and used the prepData function to prepare data for modelling. 

With the prepared data, we used the fitHMM function to fit the baseline models without any covariates 
for year 2020 and 2021 separately, with the consideration that an eight-month time gap between the two-year 
data will leads to inadequate estimation. The fitHMM function uses the Viterbi algorithm to compute the most 
likely sequence of hidden states, which requires the user to provide number of states, probability distributions 
of the data streams, and the corresponding starting values for the distribution parameters. 

For the choice of number of states, we compared the performance of a 2-state and 3-state HMMs (the 
most common choice in movement ecology literature, Bacheler et al., 2019) by a priori experiment, and the 
results suggested that a 2-state model adequately represented the behavior patterns. Therefore, we constructed 
a 2-state HMM to capture the predominant behaviors of the goliath grouper using acceleration rates as the 
primary observable data stream for both year data. The choice of probability distributions of the acceleration 
and the corresponding initial parameters were completely driven from exploratory data analysis (EDA) in 
Panel a) from Fig. S3. Specifically, we specified a log-normal distribution for all 2 states, as assuming a 
common distribution for all latent states is a classical way to fit HMMs (Leos-Barajas et al. 2016). The orange 
dashed lines in plots from Panel a), Fig. S3, indicated the initial location parameters (artificially suspect) for 
the log-normal distributions: for 2020, we specify µ1 = 0 for state 1 and µ2 = −1.2 for state 2; for 2021, we 
specify µ1 = 0 for state 1 and µ2 = −1.5 for state 2. Besides, we assumed the initial scales for both states to be 
σ1 = σ2 = 0.2 for both year model. 

When fitting the full model, we standardized all covariates to mitigate the potentials for the impact of the 
covariates with small values (e.g., Water Current and Lunar Illumination) on the transition probabilities being 
obscured by the covariates with large values (e.g., Depth or Temperature), to improve model performance and 
interpretation. Moreover, the fitHMM function cannot handle missing covariates values, so we removed all the 
missing values from the covariates, which removed all the observations for one grouper in 2020 (ID: 10420) 
and another one in 2021 (ID: 10428). At the end of this stage, there were only 7 groupers remaining in 2020 and 
8 groupers remaining in 2021 in our study data. 
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Results  
We fitted a N = 2 HMM for all the groupers for each year separately, including the acceleration rate (m/s2) 
series as the only observed state-dependent process. The estimated t.p.m. for both year 2020 and 2021 was 

 

and the implied stationary distribution was (0.379 0.621) in 2020 and (0.471, 0.529) in 2021. 

As a result, the baseline model successfully identified two biologically meaningful activity states (Fig. 
S3 b)). State 1 was characterized by a larger mean and variance in the acceleration rate, with the groupers 
moving at a mean rate of 0.73 m/s2 every 10 minutes for 2020, and 0.67 m/s2 every 10 minutes for 2021. 
This suggested that State 1 was a high activity state that might correspond to times when the groupers were 
actively travelling or foraging. Conversely, State 2 with a lower mean and variance in the acceleration rate, 
inferred that the groupers moved at a much lower mean rate of 0.34 m/s2 every 10 minutes for 2020, 0.33 
m/s2 every 10 minutes for 2021. This suggested that the State 2 was a low activity state that might be relevant 
to the times when the groupers were resting. The distinction between the two stationary-state distribution was 
beneficial to decode the most likely state sequence behind the acceleration process (Fig. S3 c)) – we can see a 
relatively clear boundary between the colored points. This inferred that the baseline model, despite its 
simplicity, captured the main activity features performed by the goliath groupers in the dataset. 

Finally, we experimented a 3-States HMMs without covariates, but the prediction performance did not 
provide significant improvement and the biological interpretability of the states worse off. Therefore, we 
considered only formulation with two states in the next section for model development. 

Full Model 

In this section, we extended the baseline model to allow the transition probabilities being a function of 
environmental covariates, including water current velocity (m/s), lunar illumination percentage, temperature 
(◦C), and Time of day (0-24 scale, with 12 represents midday). Moreover, the observed depth data stream 
helped to decode states in our prior experiment with 2-data-stream HMMs, so fish depth was included as 
covariate as well. We compared the models using AIC and selected the one with the smallest AIC value. In 
our analysis, the full model exhibited a smaller AIC compared to the base model. 
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a) Logarithm-transformed acceleration process smoothed by 10-minute interval 

 

b) The Stationary State Distributions 

c) Decoded Acceleration Time-Series 

Fig. S3: HMM result for base model with left plots being 2020 and right plots being 2021. Panel (a) shows 
the time series plot for acceleration. The orange dashed lines indicated the choice for initial location 
parameters when fitting the HMM: the of the log-normal distributions, which were the assumed latent 
distribution of acceleration process. Panel (b) shows the resulted stationary state distributions, implying from 
the baseline 2-state HMMs had distinguishable shapes between the density lines, and Panel (c) shows the 
decoded state series, showing clear boundary between the two colours, which indicated the baseline model 
successfully identified the two hidden states. 
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