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Figure S1: Locations of all scamp histology samples (A) and spawning females (B). 
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Table S1: Number of histology samples in each region from fishery independent and 
fishery dependent sources. Years marked with an asterisk (*) were excluded from analyses 
because they had fewer than 30 total samples. 

 

US Atlantic US Gulf of Mexico 
Fishery Independent Fishery Dependent Fishery Independent Fishery Dependent 

Spawning 
Not 

Spawning Spawning 
Not 

Spawning Spawning 
Not 

Spawning Spawning 
Not 

Spawning 
Total 312 1909 218 1270 26 155 110 1183 
1977* 0 0 0 0 0 0 0 14 
1978 0 0 0 0 1 6 6 220 
1979 0 0 0 62 0 0 20 282 
1980 0 17 0 37 0 0 15 131 
1981* 0 2 0 6 0 0 0 0 
1982* 0 2 0 0 0 0 0 0 
1983* 0 6 0 1 0 0 0 0 
1984* 2 8 0 0 0 0 0 0 
1985* 4 8 0 0 0 0 0 0 
1986* 4 3 0 0 0 0 0 0 
1987* 1 6 0 0 0 0 0 0 
1988 8 22 0 0 0 0 0 0 
1989* 5 11 0 0 0 0 0 0 
1990 20 55 0 0 0 0 0 0 
1991 0 55 0 0 0 0 0 0 
1992 10 48 0 0 0 0 0 0 
1993 28 56 0 0 0 0 0 0 
1994 29 99 0 0 0 0 0 0 
1995 6 111 46 13 0 0 0 0 
1996 20 126 69 294 0 0 0 0 
1997 1 193 0 0 0 0 0 0 
1998 32 74 0 0 0 0 0 0 
1999 2 65 0 0 0 0 0 0 
2000 10 55 0 0 5 18 0 0 
2001 5 91 0 0 0 9 0 0 
2002 2 57 0 0 5 12 1 8 
2003 0 53 0 0 0 0 0 0 
2004 17 60 0 4 1 17 4 40 
2005 7 68 0 428 1 13 24 143 
2006 1 39 66 276 0 0 0 0 
2007 2 87 37 144 0 18 0 8 
2008 0 20 0 0 1 6 4 10 
2009 2 37 0 0 0 12 0 0 
2010 13 29 0 0 8 0 0 2 
2011 14 60 0 0 1 4 0 9 
2012 14 52 0 5 1 3 29 122 
2013 21 39 0 0 2 9 5 146 
2014 15 78 0 0 0 6 0 23 
2015 14 63 0 0 0 6 1 18 
2016 3 54 0 0 0 9 1 7 
2017* 0 0 0 0 0 7 0 0 
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Text S1 – Position Relative to the Shelf Break 

Because we are trying to estimate the distribution of a species that spans both sides of the Florida 
peninsula, latitude and longitude are not useful as spatial predictors of presence or abundance. For 
example, the same latitude exists on both the east and west coast of Florida, but the spatial patterns 
of the scamp are very different on either side of the peninsula. Therefore, if we tried to use latitude 
to predict scamp presence or abundance, the model would have trouble defining a relationship and 
would likely provide poor estimates everywhere. Instead, it is more helpful to define position relative 
to where the continental shelf begins to drop off very quickly (the shelf-break), an ecologically 
relevant geological feature that follows the coastline throughout the region. Scamp are thought to 
spawn and be more abundant close to the shelf-break. So, for our analyses we used position relative 
to the shelf-break instead of latitude and longitude. Specifically, for each location of interest we 
calculated the distance to the shelf-break and the position along it. We then used these two metrics to 
define position during our modeling. 

To do this, we extracted the 250-meter isobath from GEBCO because it provides a good 
approximation of the shelf-break in our region (Figure S2). Then, for each location of interest we 
calculated the distance to the closest point along the shelf-break. Next, we calculated the distance 
travelling along the shelf break between the USA-Mexico border and that same closest point. In this 
way, we can define the position of any location in terms of proximity to the shelf-break and position 
along it (Figure S3). For position along the shelf-break low values indicate locations close to Mexico 
and high values indicate locations close to North Carolina. When modeling the probability of 
spawning we only used distance to the shelf-break and not position along it because we had few data 
points west of Florida. When modeling scamp presence and abundance we used both distance to the 
shelf-break and position along it to predict the spatial distribution of scamp.  
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Figure S2: Continental shelf with depth contours. In this region, the 250-meter depth contour 
closely approximates the outer edge of the continental shelf. Spatial information for the continental 
shelf is from the Global Seafloor Geomorphic Features map. 
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Figure S3: Position relative to the continental shelf-break (250m isobath). To predict the scamp 
spawning distribution, we defined position relative to the continental shelf-break (thick black line). 
For each location we calculated the distance (black lines) to the closest point on the shelf-break (red 
x’s). Next, we calculated the distance travelling along the shelf break from the USA-Mexico border 
and that same closest point. In this way, we can define the position of any location in terms of 
proximity to the shelf-break and position along it. For position along the shelf-break low values 
indicate locations close to Mexico (purple points) and high values indicate locations close to North 
Carolina (yellow points). 
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Text S2 – Scamp Distribution: Data and Models 

Visual Survey Data  

To define the spatial distribution of scamp we used data from five fishery independent visual 
surveys that sample near the southeast United States (Figure S4). This includes four video surveys 
(FWRI, NMFS-MS, NMFS-PC, SEFIS) and one diver survey (RVC). Although each survey focuses 
primarily on a different region, there is considerable spatial overlap between them. All three video 
surveys that sample in the Gulf of Mexico overlap (FWRI, NMFS-MS, NMFS-PC). The diver survey 
(RVC), which samples in the Florida Keys overlaps with the FWRI video survey. The FWRI video 
survey also has limited sampling along the east coast of Florida, and therefore overlaps with the video 
survey off the Atlantic coast of the southern United States (SEFIS). We only used data collected 
between the years 2011 and 2017 because not all surveys sampled outside of this range. 

Three of the four video survey programs quantified scamp abundance using the max N metric 
(FWRI, NMFS-MS, NMFS-PC), which is the highest number of individuals observed at any single 
time point during an entire video (Campbell et al. 2015). This is sometimes also referred to as 
mincount because it represents the minimum estimate of how many fish are present at the site. The 
fourth video survey (SEFIS), however, uses the sum count (or the associated mean count) metric. 
This is the sum (or mean) of the number of fish observed on 41 frames throughout the video 
(Schobernd et al. 2014). Although both metrics have merits, in order to compare the data across 
surveys we used the individual frame counts from the SEFIS data to calculate an estimated max N as 
the maximum number of scamp observed on a single frame. Although this is not a true max N, 
because SEFIS videos are only read for 41 frames rather than the full video, evidence suggests that 
analysis of limited frames can closely approximate analysis of the entire video (Bacheler and Shertzer 
2015). 
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Figure S4: Fishery independent visual survey locations near the southeastern United States. (A) 
Survey locations sampled by each program, and (B) the same locations with the size of the point 
scaled by the number of scamp observed. 
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Visual Survey Delta GAM 

We predicted the spatial distribution of scamp by analyzing these visual survey data with a two-
step delta GAM approach. First, we developed a binomial GAM sub-model to predict the probability 
of scamp presence. Next, we used only those survey data that observed scamp to develop an additional 
GAM sub-model that predicts scamp abundance when present. Then, we estimated the overall 
abundance of scamp at each release location as the product of these two predictions. 

Both sub-models used the same set of covariates, which included all variables that overlap across 
all five surveys. These are average bottom depth, change in bottom depth, distance to the shelf break 
and position along the shelf break (Text S1), percent observed substrate, maximum relief, year, and 
survey program. To standardize across the surveys, we calculated the percent observed substrate as 
the percent of the bottom that is covered by rock, hard coral, or soft coral. We also sorted relief into 
three levels; we categorized locations with a maximum relief less than 0.3 meters as “low relief,” 
locations with a maximum relief between 0.3 and 1.0 meters as “moderate relief,” and locations with 
a maximum relief greater than 1.0 meter as “high relief.” 

For variable selection we used the “select == TRUE” argument in the mgcv package in R, which 
is the recommended method for GAMs (Marra & Wood 2011) and did not eliminate any covariates 
for either submodel. Therefore, both final submodels included the entire suite of covariates that 
overlap across the surveys. The binomial GAM submodel that predicted probability of scamp 
presence explained 25.6% of the deviance in whether a survey observed scamp and had an adjusted 
r2 of 0.238. For the positive count submodel we considered various error distributions, including 
Gaussian with a fourth root or log transformation, Tweedie, Quasipoisson, Gamma, and Negative 
Binomial. The Gaussian error distribution with fourth root transformed scamp counts performed the 
best (based on AIC) and explained 26.2% of the deviance in survey counts (when scamp were 
observed) and had an adjusted r2 of 0.254. 
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Figure S5: Predicted spawning distribution by depth. Calculated as the product of three models: 
1) the probability of scamp presence, 2) the estimated abundance when present, 3) the probability of 
spawning. Values are proportional to the maximum predicted spawning. We only simulated spawning 
between depths 14 and 279 (dashed lines), which bound the middle 95% of the area under the depth 
marginal effect. Empirical histology samples from spawning females ranged in depth from 14 to 177 
meters. 
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Text S3 – Sample Size Selection 

To determine how many particles to release in each simulation year we conducted a preliminary 
set of releases from all locations and dates in three different years. From the results of each year, we 
subsampled particles with replacement 15 times for each of 80 subsample sizes ranging 
approximately from 2,000 to 180,000. For each subsample we calculated several proportions of 
interest (e.g., the proportion of Atlantic recruits that started in the Gulf of Mexico), and the standard 
deviation of each proportion for a given sub-sample size. We then used plots showing how these 
proportions and standard deviations change with increasing sub-sample size (Figure S6) to determine 
that we would not benefit from releasing more than 100,000 particles in a year. 
 

 

 
Figure S6: Re-sampling analysis using preliminary simulation results confirmed that 100,000 virtual 
larvae per year is a sufficient sample size. We took re-samples of various sizes for each of three years. 
The top row shows the proportion of Atlantic recruits that came from the Gulf of Mexico and the 
bottom row shows the standard deviation in that proportion for a given sub-sample size. 
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Figure S7: We simulated spawning every other day during the spawning season (A) from grid 
locations spaced at 10km intervals (B). However, we randomly assigned each location to one of five 
groups and spawned eggs from each group on a different set of dates. Thus, 20% of the locations 
simulated spawning on each day, with spawning occurring at individual locations every 10 days. This 
maintained the temporal and spatial resolution needed for robust probabilistic results but reduced the 
total number of virtual eggs required for each simulation. The text labels identify the geographic sub-
regions referenced in Figures 2 and S10. TX = Texas, LA = Louisiana, FL-Pan = the Florida 
Panhandle, FL-WFS = the West Florida Shelf, FL-Keys = the Florida Keys, FL-SE = the Atlantic 
coast of Florida, SC = South Carolina. 
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Text S4 – Vertical Distribution of Eggs and Larvae 

Egg Buoyancy 

Because grouper eggs are positively buoyant (Colin et al. 1996), we specified that simulated eggs 
will float to the surface over the first nine hours and concentrate in the top 15 meters of the water 
column until 48 hours after release. To define rates of vertical movement that realistically 
approximate the initial movements of grouper eggs we conducted two preliminary simulations using 
the optional buoyancy algorithm in CMS. This capability applies the physical properties of particles 
to simulate their sinking or floating. To do this, it uses Stoke’s Law, which relates vertical velocity 
to the diameter and density of the particle, along with the density and viscosity of the water. However, 
the water density and viscosity are calculated directly from the hydrodynamic model at the depth 
location of the particle using temperature and salinity estimates, which are highly variable for the 
hydrodynamic products used here. Therefore, when using different hydrodynamic products the rate 
that individuals particles ascend in the water column is highly variable across models. Therefore, to 
eliminate the possibility that differences in the vertical velocity of simulated eggs might introduce 
variability across our simulations, we decided not to use the buoyancy module during our dispersal 
simulations. Instead, we conducted two preliminary simulations with the buoyancy module, one using 
SABGOM and one using HYCOM. We then used the combined results to develop a realistic vertical 
distribution of grouper eggs during the first two days and applied it to all other simulations. In this 
way, we were able to use two different hydrodynamic models to realistically approximate the rate 
that grouper eggs float to the surface, but also use the same rate of vertical movement consistently 
across all simulations.  

We also conducted an additional set of preliminary simulations to investigate whether the rate of 
egg floating in the first two days is likely to influence our results. Using both SABGOM and 
HYCOM, we conducted paired simulations that either simulated the eggs floating quickly (reaching 
the surface 4 hours after release) or remaining uniformly distributed in the water column for the entire 
first 48 hours. For scamp, we found that whether eggs float quickly or do not float at all has little 
influence on the findings of our connectivity simulations. Therefore, we used the vertical movement 
rates derived from the pooled buoyancy simulations described above and applied it consistently to all 
dispersal simulations. 

Vertical Distribution of Larvae 

After two days, when grouper eggs typically hatch into larvae (Roberts and Schlieder 1983, Colin 
et al. 1996), the simulated larvae are subject to vertical migration with depths determined 
probabilistically from empirical data. For the Base simulation, we used one vertical distribution 
throughout the entire pelagic larval duration (Table 2) and calculated it using data from 
ichthyoplankton surveys in the region that operate during the scamp spawning season. Specifically, 
we analyzed data from surveys that use the Multiple Opening and Closing and Environmental Sensing 
System (MOCNESS), which holds nine nets and allows scientists to choose the sample depth bin for 
each net. As a result, the system can sample nine different depth bins in a single tow. Because grouper 
larvae are rare in the samples, and hard to identify to species, we used data from tows that caught any 
Epinephelinae larvae during the scamp spawning season. This included 54 larvae caught during 
Southeast Area Monitoring Assessment Program (SEAMAP) winter surveys (February and March; 
G. Zapfe, unpublished data) and 18 larvae caught in spring surveys (May) that are independent from 
SEAMAP (T. Gerard, unpublished data). 



Supplement to Brothers et al. (2024) – Mar Ecol Prog Ser 750: 133–152 – https://doi.org/10.3354/meps14728 
 

 13 

For those tows that caught Epinephelinae larvae anywhere in the water column we calculated the 
mid-depth and density of larvae by volume of water filtered for each depth bin sampled. We organized 
all of the samples, including those that did not catch any larvae, into 20-meter depth bins from 0 (the 
surface) to 100 meters, by the mid-depth of the sample. Then, we calculated the mean larval density 
of the samples in each 20-meter depth bin and used these densities to calculate the proportion of 
larvae expected in each depth bin. This provides the best estimate of the vertical distribution of scamp 
larvae, and is what we assumed throughout the entire pelagic larval duration for the base simulation 
as well as the sensitivity simulations that use different hydrodynamic models (Table 2). CMS uses 
this user-defined distribution to specify the depth distribution of simulated larvae during each time 
step.  

For the sensitivity simulation that investigated uncertainty in the vertical distribution of larvae 
we also estimated how this distribution changes with ontogeny. Specifically, we estimated two 
different vertical distributions, one for pre-flexion larvae and one for post-flexion larvae. The exact 
timing of flexion is not known for scamp, but closely related grouper species tend to complete flexion 
at approximately 6 mm in length and 15 days after fertilization (Colin et al. 1996). Therefore, when 
analyzing MOCNESS data, we used 6 mm to estimate what proportion of pre-flexion and post-flexion 
grouper larvae in each depth bin. Not all the larvae caught in MOCNESS sampling are measured for 
length, however, so to obtain large enough sample sizes we had to include grouper larvae from the 
entire year instead of only the scamp spawning season. Then, we applied these estimates to the 
vertical distribution of larvae caught during the scamp spawning season (described above) to 
approximate vertical distributions of pre-flexion and post-flexion scamp larvae. During the sensitivity 
simulation that includes an ontogenetic shift in vertical distribution (OVM), simulated larvae 
transition from the pre-flexion distribution to the post-flexion distribution at 15 days after release 
(Table 2). This approach assumes that the proportion of pre-flexion and post-flexion larvae in each 
depth bin is relatively consistent across grouper species and seasons. But given the data limitations, 
it still allows us to consider how variation in ontogenetic vertical migration influences our results. 

Text S5 – Pelagic Larval Duration 

Because the pelagic larval duration of scamp is unknown, we estimated the competency period 
of 33 to 52 days as 2.5% and 97.5% quantiles for the ages of newly settled gag grouper larvae. We 
used the “digitize” package in R (Poisot 2011) to extract the ages of newly settled gag larvae from 
published reports of gag settlement in the northeastern Gulf of Mexico (Fitzhugh et al. 2005) and the 
U.S. South Atlantic (Adamski et al. 2012). There is some evidence, however, that gag pelagic larval 
durations are longer in the Atlantic (Figure S8), so one of our biological ensemble simulations 
extended the competency period to 57 days, the 97.5% quantile for gag settlement age in the Atlantic. 
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Figure S8: The pelagic larval duration of gag larvae in the Gulf of Mexico and U.S. Atlantic. 
We allowed simulated larvae to settle between days 33 and 52 (dashed lines), because most gag larvae 
settle between these ages. Gag larvae in the Atlantic (green points) settle slightly later than those in 
the Gulf of Mexico, however. Therefore, we conducted a sensitivity simulation that allowed larvae 
to settle up to 57 days (the 97.5% quantile of Atlantic gag settlement age). 

 

 
Figure S9: Catch location and depth of age 0 and 1 scamp. Catch locations and associated depths 
for 47 age 1 and 7 age 0 scamp caught by surveys in the Gulf of Mexico. Although there are few 
samples, most young scamp were caught in depths less than 30 meters, as is consistent with anecdotal 
reports in the literature (Coleman et al. 2011). Because data are limited, and the nursery habitat of 
scamp is uncertain, we investigated two alternative assumptions that allowed virtual larvae to settle 
at any location with a bottom depth shallower than 30 meters or 45 meters. 
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Text S6 – Hydrodynamic Products 

In total, we used velocity fields from six hydrodynamic products (Table 2), but one was only 
used as a nest for others that did not cover our entire study area. They came from different ocean 
circulation models as well as implementations with a range of spatial and temporal resolutions, 
forcings, and data assimilation approaches.  

The GOM HYCOM (1/25°) is a hindcast with 27 vertical layers. It is forced by winds and surface 
fluxes from the Navy Operational Global Atmospheric Prediction System, large-scale model fields 
from the HYCOM GOFS at the open boundaries, and data assimilation through the Navy Coupled 
Ocean Data Assimilation (NCODA) system. The GOM HYCOM HiRes (1/50°) is a data assimilative 
hindcast simulation with 32 vertical layers. It is forced by daily river discharges implemented at 22 
major river discharge points into the Gulf of Mexico and minor river discharge points represented by 
climatological values. It assimilates satellite observed altimetry and sea surface temperature data as 
well as salinity and temperature measurements from Argo drifters and Expendable 
BathyThermographs. The HYCOM GOFS provides forcing at the open boundaries and the surface is 
forced by atmospheric circulation estimates from the European Centre for Medium-Range Weather 
Forecasts (ECMWF, 1/8o). 

The HYCOM IAS (1/32°) is also a data assimilative hindcast, but it has 30 vertical layers and 
uses different forcing. The surface is forced by the Climate Forecast System Reanalysis and it 
includes river inflow by using monthly climatological river discharge to specify a virtual salinity flux. 
It assimilates satellite observed altimetry and sea surface temperature data as well as salinity and 
temperature measurements from Argo drifters. The Mercator GLORYS version 12v1 (1/12°) has 50 
vertical layers and is a reanalysis from the Copernicus Marine Environment Monitoring Service 
(Lellouche et al. 2018, Lellouche et al. 2021). It uses version 3.1 of the Nucleus for European 
Modelling of the Ocean model, driven at surface by ECMWF ERA-Interim reanalysis. It assimilates 
satellite observed sea level anomaly, sea surface temperature, and sea ice concentration data as well 
as in situ temperature and salinity vertical profiles from the Coriolis Ocean Database ReAnalysis 
(Lellouche et al. 2018). The SABGOM model implementation (1/25°) has 36 vertical layers and is 
based on the Regional Ocean Modeling System. The model uses the HYCOM GOFS for open 
boundary conditions and superimposes tidal harmonics from the ADCIRC western Atlantic tidal 
database. The surface is forced by the NCEP North American Regional Reanalysis and major rivers 
in the region are implemented using daily stream flow data from USGS gauges. 
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Figure S10: Average eddy kinetic energy (EKE) and current velocity for the velocity fields used 
in our simulations. Note that these five velocity fields use estimates from six different oceanographic 
models, but one is only used as a nest for others that do not cover the entire region of interest. 
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Figure S11: Spatial polygons used to calculate connectivity matrices. These are the spatial 
polygons used to aggregate successfully settled larvae when calculating connectivity matrices 
(Figures 2 and S12). 
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Figure S12: Connectivity matrices by simulation. The vertical axis represents the spawning lo-
cation, and the horizontal axis represents shows the settlement location of successful virtual larvae. 
The values (on a log scale) are proportional to the maximum connectivity across all panels with 
yellow indicating high estimated connectivity and purple indicating low estimated connectivity. The 
black diagonal line represents the axis of local retention (i.e., settlement location = spawning 
location). TX = Texas, LA = Louisiana, FL-Pan = the Florida Panhandle, FL-WFS = the West Florida 
Shelf, FL-Keys = the Florida Keys, FL-SE = the Atlantic coast of Florida, SC = South Carolina. These 
geographic sub-regions follow the U.S. coastline from west to east and are identified in figure S7. 
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Figure S13: Spawning locations of successful recruits for the hydrodynamic (A) and biological 
(B) ensembles. Values are proportional to the maximum, with yellow indicating an area where many 
successful virtual were spawned, and purple indicating an area where few successful particles were 
spawned. 
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Figure S14: Settlement locations of successful recruits for the hydrodynamic (A) and biological 
(B) ensembles. Values are proportional to the maximum, with yellow indicating an area where many 
successful virtual settled, and purple indicating an area where few successful particles settled. 
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