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Table S1. Summary of number, size ranges and references on relationships between carbon content 
(C, in µg), prosome or total length (L, in µm), volume (V, in µL), ash-free dry weight (ADW in µg) 
and dry weight (DW, in µg) for prey found in larval rainbow smelt gut contents. 
 
Prey item n Size range Measure Equation Reference 
Copepoda      

Eggs 6950 40–122  V 4/3 ((L/1000)/2)3  
   C 140V Kiørboe et al., 1985 

Nauplii 18 132–362  DW 3.009 (L/1000)1.706 Culver et al., 1985 
   C 10(log DW – 0.499)/0.991 Wiebe, 1988 

Eurytemora spp. (N1–N6) 232 112–404  DW 3.009 (L/1000)1.706 Culver et al., 1985 
   C 10(log DW – 0.499)/0.991 Wiebe, 1988 

Copepodites 29 275–705  DW 7.047 (L/1000)2.399 Bottrell et al., 1976 
   C 44.7% DW Mauchline, 1998 

Eurytemora spp. (C1–C6) 1970 289–1028  DW 102.088 (L/1000) – 0.859 Burkill & Kendall, 1982 
   C 44.7% DW Mauchline, 1998 

Halicyclops spp. (C1–C6) 23 318–401  DW 7.047 (L/1000)2.399 Copepod conversion; 
Bottrell et al., 1976 

   C 44.7% DW Mauchline, 1998 
Cyclopoida 7 123–793  DW 7.047 (L/1000)2.399 Copepod conversion; 

Bottrell et al., 1976 
   C 44.7% DW Mauchline, 1998 

Acanthocyclops robustus 1 792 DW 7.047 (L/1000)2.399 Copepod conversion; 
Bottrell et al., 1976 

   C 44.7% DW Mauchline, 1998 
Diplostraca 1 180 C 104.15 log L – 11.15 Uye, 1982 

Bosmina spp. 285 105–630  DW (104.849 log(L/1000) – 

3.857 x105)/1000 
Rosen, 1981 

   C 10(log DW – 0.499)/0.991 Wiebe, 1988 
Mysidacea 6 476 –3053  DW 6.605 (L/1000)2.57 Chigbu & Sibley, 1996 
   C 10(log DW – 0.499)/0.991 Wiebe 1988 

Neomysis americana 19 1917–11121 DW 6.605 (L/1000)2.57 Chigbu & Sibley, 1996 
   C 10(log DW – 0.499)/0.991 Wiebe, 1988 
Gammarus spp. 15 778–2380 DW 9.616 (L/1000)2.604 Pöckl, 1992 
   C 10(log DW – 0.499)/0.991 Wiebe, 1988 
Gammarus tigrinus 1 1609 DW 9.616 (L/1000)2.604 Pöckl, 1992 
   C 10(log DW – 0.499)/0.991 Wiebe, 1988 
Ostracoda 2 512–629 AFDW 0.0228 L2.3698 Mumm, 1991 
   C 10(log AFDW – 0.410)/0.963 Wiebe, 1988 
Crangon septemspinosa 1 2500 DW 100.039(L/100) + 0.51 Wilcox & Jeffries, 1973 
   C 10(log DW – 0.499)/0.991 Wiebe, 1988 
Gastropoda 1 306 DW 6.07 (L x 10–6)2.59 x 

108 
Legendre & Michaud, 
1998 

   C 22.1% DW Omori, 1969 
Unidentified material 
 

DW 109.08 V0.9591 Sirois & Dodson, 2000a 

   C 10(log DW – 0.499)/0.991 Wiebe, 1988 
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Table S2. Results of permutational analyses of variance (PERMANOVA) performed on 
carbon weight data from visual analysis of larval gut contents and data from molecular 
Eurytemora spp. identification in larval gut contents via qPCR. PERMANOVA analyses 
were based on Bray-Curtis dissimilarities (Bray & Curtis 1957) and were performed using 
9999 permutations. The homogeneity of dispersion was verified prior to each PERMA-
NOVA.  For visual data, individual larvae were tested using the carbon weight (µgC) of each 
prey consumed divided by the standard length (mm) of the larva. Preliminary tests revealed 
no statistical influence of larval lineage in diet differences (p > 0.05), so this factor was 
removed from the analysis and two-way PERMANOVA were employed for diet composition 
comparison. For molecular data, diet composition in terms of the complex E. affinis NAC/E. 
carolleeae based on percentage of qPCR results per station was determined. Stations within 
salinity zones were considered as replicates. 
 

Factor df Visual Molecular 
Pseudo-F p-value Pseudo-F p-value 

Salinity habitat 2 4.331 0.001 6.258 0.013 
Survey 3 2.163 0.003 1.411 0.261 
Salinity habitat×survey 6 3.262 0.001 0.928 0.507 
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Table S3. Diet composition expressed as percentage of prey-specific index of relative importance (%PSIRI) for the prey categories 
identified in rainbow smelt larval diet in each salinity zone sampled throughout summer 2021 in the MTZ of the St. Lawrence Estuary. 
 

Class Order Family  Item Stage 
Limnetic Oligohaline Mesohaline 

Mid-
June 

Late 
June 

Mid-
July 

Early 
Aug. 

Mid-
June 

Late 
June 

Mid-
July 

Ear.
Aug. 

Mid-
June 

Late 
June 

Mid-
July 

Early 
Aug. 

Branchiopoda Diplostraca Bosminidae Bosmina sp. 
 

5.32 4.39 5.52 2.68 8.51 0.29 0.06         
Unidentified 
Cladocera 

 

    0.16        
Malacostraca Amphipoda Gammaridae Gammarus 

tigrinus. 

 

   2.41         
   Gammarus sp.  4.12  0.16 6.61  2.68        

Decapoda Crangonidae Crangon 
septemspinosa 

Zoea 
         2.32    

Mysida Mysidae Neomysis 
americana 

 

      5.15 33.25  21.50      
Unidentified 
Mysida 

 

     6.25  1.13  3.30   
Maxillopoda 
(Copepoda) 

Calanoida Temoridae Eurytemora sp. N1  0.30   0.23           N2  1.28   0.92           N3  0.74   5.97      0.35      N4  1.60   6.92      0.36      N5  2.52   6.34      2.03      N6  1.92   6.80      0.43      C1  1.09   2.49    3.27  2.84      C2  1.97   0.58   0.13   3.95 1.82     C3        0.18 4.38  0.60 2.77     C4  0.33  0.07    3.85 3.54 0.96 6.82 10.40     C5 1.59 1.73 1.17 0.78 6.95 0.26 3.33 8.44  20.24 13.40 41.55    
 C6 

(fem.) 27.17 13.09 26.15 38.93 21.31 16.24 21.06 7.59 12.51 11.49 17.46 5.31    
 C6 

(male) 15.27 56.91 22.33 18.96 4.89 44.19 38.25 24.66 36.40 16.09 31.55 19.15     Eggs 23.63 8.93 32.91 28.40 7.63 19.13 32.14 18.34  5.95 9.02 7.92  
Cyclopoida Cyclopidae Acanthocyclops 

robustus 
C1–C6 

4.57               
Halicyclops sp. C1–C6  1.92  0.27             Eggs    0.73         

   Unidentified 
Cyclopidae 

C1–C6 
  0.01  0.16   0.26   0.51  
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Table S3. Continued. 
 

Class Order Family  Item Stage 
Limnetic Oligohaline Mesohaline 

Mid-
June 

Late 
June 

Mid-
July 

Early 
Aug. 

Mid-
June 

Late 
June 

Mid-
July 

Early 
Aug. 

Mid-
June 

Late 
June 

Mid-
July 

Early 
Aug.    

Unidentified 
Copepoda 

C1–C6 
1.07 1.28   19.75    0.84        N1–N6    0.16 0.25 7.37  0.13  2.62 0.84 11.08     Eggs     0.13    3.84    

Ostracoda 
  

Unidentified 
Ostracoda 

 

     0.05     0.76  
Gastropoda 

  
Unidentified 
Gastropoda 

 

         1.39   
Unidentified 
material 

  
 

 

17.27  11.74   3.53  2.03 35.24 14.14 9.09  
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Figure S1. Non-metric multidimensional scaling (nMDS) analysis plots of rainbow smelt 
diet in the four sampling periods separated by lineage (Atlantic or Acadian). 
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Figure S2. Non-metric multidimensional scaling (nMDS) analysis plots of rainbow smelt 
diet and prey field composition across the salinity habitats of the MTZ (limnetic, oligohaline 
and mesohaline) for mid-June, late June, mid-July and early August. 
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Figure S3. Spatial-temporal comparisons of larval diet through salinity habitats and time, 
based on visual gut contents. Summary of pair-wise comparisons from the permutational 
analysis of variance (PERMANOVA). Spatial comparisons between salinity habitats in 
each survey (a) and temporal comparisons of each salinity habitat through the sampling 
period (b) are shown with significant interactions and p–values in bold. Prey with highest 
percent contribution to the dissimilarity (SIMPER) are shown for interactions with 
significant p-values.  
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Figure S4. Mean standard length (mm) of rainbow smelt larvae by salinity habitat in 
summer 2021. Boxplots show the median (horizontal line), interquartile range (IQR, 
box), and whiskers extending to 1.5 times the IQR. Outliers are indicated by small dots 
beyond the whiskers, while larger filled circles represent the mean values for each group. 
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