Supplement 2

Supplementary information for McGowan et al. "Linking monitoring and data analysis to predictions and decisions for a range-wide eastern Black Rail status assessment" including tables to identify covariates and covariate data sources for the occupancy and projection modeling analysis.

Table S1: Covariates focused on precipitation and temperature as potentially important predictors of site extinction probability and site colonization probability. *Current* covariates used in testing hypotheses for black rail habitat associations and *future* covariates refer to information used in future condition projection models.

ТНЕМЕ	Current	Future	Scale	Source
ALTERED PLANT COMMUNITIES/ INVASIVE PLANTS	National Land Cover Database; Soil Survey of the United States	NLCD change rate increase	30 square meters	Homer et al. 2015, (Soil Survey Staff 2017)
ALTERED FIRE REGIME	Drought Severity Index during breeding season	Not modeled	Not modeled	National Drought Mitigation Center (www.drought.gov)
HABITAT CONVERSION	Urban land change	SLEUTH	NLCD: 30 square meters, Sleuth: 60 square meters	Homer et al. 2015, SLEUTH, 2017
HABITAT MANAGEMENT	Total farms in acres +	Increase by paper rates: + rangeland	National- level	Thornton, 2010

			1	
	rangeland	conversion		
HABITAT	Imperviou	Increase by	60 square	SLEUTH
FRAGMENTATIO	ssurface	SLEUTH	meters	
N	shanga for	SELOTI	lileters	
	change for			
	trend data			
AITEDED	НИС	HUC NWI See	1 squara	Sweet et al. 2017
	noc,	1100, 1 wi, $30a$		Sweet et al. 2017
HYDROLOGY	NWI, Sea	level rise,	degree (p.	
	level rise	groundwater	43)	
	(baseline),	trends		
	groundwat			
	er			
	depletion			
	rates			
	lates			
COMPETITION &	Fire ant	Increase to hard	State-level	Korzukhin et al., 2001
PREDATION	species	northern limit in		,
	distributio	mans		
	uistiibutio	maps		
	n model			
CLIMATE AND	Climate	Rates trending	State-level	Young et al. 2017
WEATHER	during	with Climate		
EXTREMES	breeding	during breeding		
	season	season 2008 -		
	2008 -	2017 FLOOD		
	2017	FREQUENCY		
	2017,	TREQUENCI		
	FLOOD			
	FREQUE			
	NCY			
	(2010 -			
	2015)			

HUMAN-BLACK	Proportion	Increase at rate	State-level	eBird, National Gap
RAIL	overlay of	determined by		Analysis Project
INTERACTIONS	protected	encounter rates		Protected Areas Data
	areas and	in eBird		Portal
	black rail			
	occurrence			

DISEASE	No	No	Not modeled	Not modeled
OIL, CHEMICAL SPILLS AND TOXICS	Count	No	National- level	NOAA Office of Response and Restoration

Table S2: Top six competing Great Plains candidate models, AIC model ranking and parameter estimates.

Great Plains Model Selection							
Model	nPars	AIC	delta	AICwt	cumltvWt		
psi(.)gam(.)eps(.)p(.)	4	59.28	0	0.8774	0.88		
psi(.)gam(WP)eps(WP)p(Y)	9	64.67	5.39	0.0592	0.94		
psi(.)gam(FA)eps(FA)p(Y)	9	66.9	7.62	0.0194	0.96		
psi(.)gam(AP)eps(AP)p(Y)	9	66.91	7.63	0.0193	0.98		
psi(.)gam(FA+WP)eps(FA+WP)p(Y)	11	68.67	9.39	0.008	0.98		
psi(.)gam(Y)eps(Y)p(Y)	11	70.02	10.74	0.0041	0.99		
Great Plains parameter estimates	estimate	SE	UB	LB			
Initial Occupancy (psi)	0.131	0.0747	0.277412	-0.01541			
Extinction (eps)	0.317	0.217	0.74232	-0.10832			
Colonization (gam)	4.78E-05	0.00124	0.002478	-0.00238			
Detection (p)	0.263	0.11	0.4786	0.0474			

Table S3: Top five Southwest candidate models, model ranking and parameter estimates.

Texas (Southwest) Model Selection:					
Model	nPars	AIC	delta	AICwt	cumltvWt
psi(.)gam(RT)eps(RT)p(Y)	7	721.44	0	0.54252	0.54
psi(.)gam(CT)eps(CT)p(Y)	7	723.44	2	0.19941	0.74
psi(.)gam(.)eps(.)p(.)	4	723.7	2.27	0.17474	0.92
psi(.)gam(FA+RT)eps(FA+RT)p(Y)	9	725.39	3.95	0.0752	0.99
psi(.)gam(AP)eps(AP)p(Y)	7	730.63	9.19	0.00548	1
Southwest parameter estimates	estimate	SE	UB	LB	
Initial Occupancy (psi)	0.247	0.0481	0.341276	0.152724	
Extinction (eps)	0.612	0.126	0.85896	0.36504	
Colonization (gam)	0.138	0.0419	0.220124	0.055876	
Detection (p)	0.235	0.0415	0.31634	0.15366	

Table S4: Top five Southeast candidate models, model ranking and parameter estimates.

Southeast Model Selection					
Model	nPars	AIC	delta	AICwt	cumltvWt
psi(.)gam(Y)eps(Y)p(Y)	11	768.01	0	9.80E-01	0.98
psi(.)gam(.)eps(Y)p(Y)	9	776.06	8.05	1.70E-02	0.99
psi(.)gam(FA)eps(FA)p(Y)	9	778.06	10.6	4.90E-03	1
psi(.)gam(FA+Y)eps(FA+Y)p(Y)	13	784.07	16.06	3.20E-04	1
psi(.)gam(S)eps(S)p(Y)	9	800.15	32.13	1.00E-07	1
Southeast parameter estimates	estimate	SE	UB	LB	
Initial Occupancy (psi)	0.099	0.007	0.112	0.086	
Extinction (eps) year 1	0.570	0.165	0.893	0.247	
Extinction (eps) year 2	0.490	0.114	0.713	0.267	
Extinction (eps) year 3	0.001	0.044	0.087	0.000	
Colonization (gam) year 1	3.80E-02	3.20E-11	0.038	0.038	
Colonization (gam) year 2	1.00E-08	3.12E-06	6.13E-06	0.000	
Colonization (gam) year 3	1.90E-19	9.62E-17	1.89E-16	0.000	
Detection (p) year 1	0.090	0.016	0.121	0.059	
Detection (p) year 2	0.530	0.049	0.626	0.434	
Detection (p) year 3	0.299	0.061	0.419	0.179	
Detection (p) year 4	0.204	0.051	0.304	0.104	

Tables S2-4 abbreviations:

- psi initial occupancy probability
- gam colonization probability
- eps extinction probability (Persistence is 1-extinction probability)
- p detection probability
- . a parameter with no covariates
- Y year specific parameter
- WP wettest month precipitation
- AP Annual precipitation
- FA fire ants (presence/absence)
- RT Temperature range
- CT coldest month mean temperature
- S State (e.g., SC, GA, TX)
- MT Annual mean temperature

..... Indicates that additional models were evaluated but we did not include them here because they garnered no support in the analysis.

Additional Literature not cited in the main text of the paper:

- Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND, Wickham JD, Megown K. (2015) Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information: Photogrammetric Engineering and Remote Sensing 81: 345–354.
- Korzukhin, M D, Porter SD, Thompson LC, and Wiley S. (2001) Modeling Temperature-Dependent Range Limits for the Red Imported Fire Ant (Hymenoptera: Formicidae: Solenopsis invicta) in the United States. Environmental Entomology 30: 645-655.

National Drought Mitigation Center (www.drought.gov)

- National Gap Analysis Project Protected Areas Data Portal (https://gapanalysis.usgs.gov/padus/)
- Sweet WV, Kopp RE, Weaver CP, Obeysekera J, Horton RM, Theiler RE, Zervas C (2017) Global and Regional Sea Level Rise Scenarios for the United States, NOAA Technical Report NOS CO-OPS 083

(https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Sc enarios_for_the_US_final.pdf)

- NOAA Office of Response and Restoration (https://response.restoration.noaa.gov/oil-andchemical-spills/oil-spills/largest-oil-spills-affecting-us-waters-1969.html)
- Thornton PK. (2010) Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences 365:2853-67.

SLEUTH (2014) SLEUTH Projected Urban Growth,

https://databasin.org/datasets/e5860ced8b4844e88431cdbefe425e1a

Soil Survey Geographic Database (SSURGO; NRCS, 2017)

- Soil survey Staff, Naural Resources Conservation Service, U.S. Department of Agricul. Web Soil Survey Available online at: https://websoilsurvey.nrcs.usda.gov.
- Young DJ, Stevens JT, Earles JM, Moore J, Ellis A, Jirka AL, Latimer AM. (2017) Long term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters 20:78-86.