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Supplemental Materials for ‘Shifting phenology of an endangered apex 
predator mirrors changes in its favored prey’ 
 
Text S1: Additional details on our use of the Orca Master and Albion Chinook salmon test 
fishery datasets 
 
Orca Master dataset  

As a presence-only database, trends in the Orca Master dataset should be interpreted with 
care, since they could be due to shifts in effort (i.e., the number of total observations) as well as 
(or instead of) trends in SRKW presence (see Text S4: Effects of changes in effort on estimated 
phenological change in the Supplemental Materials). For this reason, and because we know there 
has been a dramatic increase in reported whale sightings (Olson et al., 2018), we report all trends 
across two different durations: the full dataset (from 1978-2017) and recent years (2001-2017). 
We use 2001 as a cut-off, to avoid the sharp increase in sightings that occurred from 2000 to 
2001 (Fig. S2-3), likely influenced by the onset of internet-based sightings platforms that began 
that year (Hauser et al., 2007; Olson et al., 2018). 

For our analyses, observation of any individual or group of whales within a pod counted 
as presence of that pod, with the exception of “L87,” an individual that spent little time with his 
natal L pod following the death of his mother, and was instead seen more frequently with J- and 
K-pods. Observations of this individual alone were therefore not counted as presence of L pod in 
our analyses. 

Prior to fitting any models, we used raw data to quantify the number of whale days (i.e., 
days on which whales were observed) within a season and year for each region. We counted a 
whale day as a day on which one or more entries in the Orca Master database reported sighting 
”southern residents”’ or J, K, and/or L pods specifically. Note that our approach differs from 
Olson et al. (2018), which included sightings of unidentified killer whale ecotypes in their 
analyses. Although the dataset consists of presence data only, we were able to generate pseudo-
absences because whales are identified to the pod level (e.g., an observation for J-pod only 
generated a known absence for K- and L-pods, and observations of transient killer whales or 
other species of whales generated absences for all three pods). 
 
 
Albion Chinook salmon test fishery dataset 

For purposes of comparison with the SRKW observations at Lime Kiln, we assumed a lag 
of 14 days for the salmon phenology dates to account for the time it takes salmon to swim from 
Lime Kiln to the location of the Albion test fishery (Ayres et al. 2012). For the comparison to 
SRKW presence at Lime Kiln, we used only the test fishery data extending through August each 
year; for the regional model (see 2.2.1), we utilized the full time period of the dataset (i.e., 
extending through October). Fraser River Chinook salmon consist of multiple stocks that differ in 
their life-histories (e.g., age, size, and run timing, English et al. 2007, Parken et al. 2008). 
Changes in the realized phenology of Chinook salmon in the Lime Kiln area can therefore be due 
to both changes in the timing of individual stocks and/or changes in the relative abundance of 
stocks with different run phenologies. We made no attempt to distinguish between these two 
types of changes, but they may be important to SRKW because the stocks can differ in nutritional 
value (O’Neill et al. 2014). We did not separate out distinct Chinook stocks within the Fraser 
River, as our goal was to quantify timing of peak abundance of all potential prey when SRKW 
typically return to their summer core habitat (Fig. 1), and we know of no evidence that SRKW 
preferentially feed on a subset of Fraser River stocks. 
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Text S2: Models 
 
Southern resident killer whale presence and their prey at Lime Kiln Point State 

1. Southern resident killer whale presence model 
We fit a separate hierarchical model to each pod (J, K, L), as well as a hierarchical model to 
all SRKWs pooled together. We estimated the presence, or occurrence probability (with 
presence when Pr(ψ = 1), as a smooth function of day of year, s(day). Specifically, we 
assumed occurrence to be a Bernoulli random variable dependent on day of year (as a 
smooth function, using thin plate regression spline basis), with a year-specific shape as well 
as a year-specific intercept (i.e., a random effect of year): 

 
 

Pr(ψi = 1) = logit−1(αyear[i] + s(day)year[i]) (1) 

αyear ~ N (µα, σα2) (2) 
 

2. Fraser River Chinook salmon abundance index model 
We modeled an index of Fraser River Chinook salmon abundance (y, the log of the daily 
catch per unit effort [CPUE] to which we added 0.001 prior to logging to avoid values of 
zero) as a smooth function of day of year (using thin plate regression spline basis), with a 
year-specific shape as well as a year-specific intercept (i.e., random effect of year): 

 
yi = αyear[i]  + s(day)year[i]) (3) 

αyear ~ N (µα, σα2) (4) 
 
The above models for killer whales and Chinook were fitted via thin plate regression spline basis 
using the programming language Stan (Carpenter et al., 2017) (www.mc-stan.org), accessed via 
the brms package (Burkner, 2018) in R (R Core Team, 2021), version 4.0.4. For each model fit, 
we ran four chains simultaneously, each with 4 000 sampling iterations (1 000 of which were 
used for warm-up). See Code S1 and S2 for model code. We assessed model performance 
through Rhat (all were close to 1) and high neff, as well as visual consideration of chain 
convergence and posteriors (Gelman et al., 2021). 
 
Southern resident killer whales and salmon in the Central Salish Sea and Puget Sound Proper 

1. Southern resident killer whale occupancy models 
We quantified region-wide pod-specific phenology for J, K, and L pods using occupancy 
models, which can estimate jointly species presence and detection probability (p, the 
probability of detecting at least one individual present at a site) by distinguishing true 
presence or absence, z (a latent, unobservable state), from observed presence. Occupancy 
models are composed of a state sub-model, which is the model for the ecological process of 
true presence or absence, and an observation sub-model, which in this case links the 
observations (i.e., the number of sightings of the pod per day per site) to the state model. We 
modeled occupancy probability ( ψyear,day) as a semi-parametric, smooth function of day of 
year (‘day’ ), using flexible thin-plate spline regression modeling, and year as a level 
(Strebel et al., 2014). Thus, the sub-models are: 

• State model, in which we assumed Zyear,day to be a Bernoulli random variable for which 
0 signifies absence and 1 is presence: Zyear,day ~ Bernoulli( ψyear,day) 

• Observation model, in which the number of successful sightings (Y) in a particular 
fishing area on a particular day in a particular year, was modeled as a binomial random 
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variable composed of the total number of sightings made in the area, year, and day 
(Tyear,day,area), and the product of the state of occurrence (Zyear,day) and detection 
probability (P). We modeled detection probability as a year- and area-specific 
probability between 0 and 1 (Parea,year): 

 

Y (area, year, day) ~ Binomial(Tyear,day,area, Zyear,day * Parea,year) (5) 
 

We fit separate occupancy models for each region (i.e., Central Salish Sea and Puget Sound 
proper) and season (spring/summer vs. fall/winter, since seasonal use varies by region) for 
each pod, and extracted estimates of annual arrival, departure, and peak occupancy dates 
with each model. We defined the arrival date as the earliest day within the season when 
occupancy probability exceeded 0.5; departure date was the latest day within the season 
when detection probability exceeded 0.5. Using a threshold probability between 0.2 and 0.5 
did not qualitatively alter observed trends.) Pod-specific occupancy models were fit using 
JAGS, a program for analysis of Bayesian hierarchical models with Markov Chain Monte 
Carlo simulation (Plummer, 2019), accessed via the R2jags package (Su & Yajima, 2021) in 
R (R Core Team, 2021), version 4.0.0. We ran four chains simultaneously, each with 12 000 
sampling iterations (4 000 of which were used for burn-in). We assessed model performance 
through Rhat, which were close to 1, and high neff, as well as visual consideration of chain 
convergence and posteriors (Gelman et al., 2021). Model code can be found in Code S3. 

 
2. Salmon abundance index models 

To estimate the phenology of likely prey in the Central Salish Sea, we fit the hierarchical 
thin-plate regression spline models described above to the Albion Test Fishery data, from 
May through October (the full seasonal extent of the dataset), and from 1994 through 2017. 
To estimate the phenology of likely prey in Puget Sound, we fit the hierarchical thin-plate 
regression spline models separately to each of 13 Puget Sound runs (including three species 
across hatchery and wild salmon in 7 streams, Table S2) and used daily abundance index 
estimates to identify the day of year of first, peak, and last migration for each group in each 
year. We then used hierarchical linear models to identify trends over time in phenology of 
salmon adult migration timing across Puget Sound proper. We fit separate multi-level linear 
models to each phenophase to estimate trends across years in the timing of adult salmon 
migration. The response variable, day is the day of year of the event (i.e., first, peak, or last 
date of migration in a given year) and the explanatory variable was year; we included group 
as a random effect to account for non-independence in timing at the group-level, as follows: 

 
dayi = αgroup[i] + βyear (6) 

αgroup ~ N(µα, σα2) (7) 
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Text S3: Comparing observed and modeled estimates of ‘whale days’ at Lime Kiln Point State 
Park, Washington, USA 

 
We calculated annual total whale days quantified from the data directly (i.e., a whale-day 

was counted as a day on which Southern Resident Killer Whales (SRKWs) were observed) and 
quantified from model-estimated probabilities of whale presence (i.e., each day’s probability of 
whale presence was summed across the year). Model-estimated presence probabilities were 
obtained from occupancy models, which estimated daily and annual probabilities of presence of 
SRKWs at Lime Kiln Point State Park. The two calculations were similar, and both reveal 
declines in SRKW presence in recent years, across all three pods (Fig. S5). This consistently 
collected dataset also suggests that SRKWs have shifted the timing of their activity in the area 
(Fig. 3 in the main text). 
 
Text S4: Effects of changes in effort on estimated phenological change 

 
With increasing public awareness of SRKWs near urban areas (e.g. the Salish Sea), the 

number of public reports of whales and people contributing to sightings networks such as the 
Orca Master Database have increased since its inception (Fig. S2). This shift in effort complicates 
interpretations of trends in the number of whale days over time (Fig. S3) because an increase in 
the number of days on which SRKWs were observed could be due to increased observer effort in 
a region, rather than due to increased whale activity in the region. To better understand how 
increased effort across the time-series (i.e., increased numbers of sightings over time) may affect 
estimates of trends in phenology, we simulated data sets of whale presence during two seasons 
equivalent to those in our data set (spring/summer, which was 1 May through 31 Sept, or 153 
days, and fall/winter, which was 1 October through 1 Feb, or 123 days). We used whale presence 
probabilities that matched the mean observed probabilities for the Central Salish Sea and Puget 
Sound regions, separately, from 1978-2017 (Table S1). We kept them constant over 40 simulated 
years, respectively. We then created an observation data set, in which effort (the number of 
observations) varied. During the low effort time period (years 1-20), the number of observations 
had a mean of 15 per year for Puget Sound and 104 per year in the Central Salish Sea (matching 
the means for these regions from 1978-1997 in the Orca Master database). During the high effort 
time period (years 21-40 in our simulated data set), the number of annual observations had a 
mean of 39 for Puget Sound and 133 for the Central Salish Sea (matching those in the Orca 
Master database from 1998-2017). We then calculated first- and last- observations dates for each 
simulated year. We ran these simulations 100 times and calculated the difference between the 
low effort and high effort time periods. We compared these to the mean differences in first- and 
last-observation dates across time periods in the Orca Master database, for each region, to 
understand whether observed changes may be due to changes in effort over time, rather than 
changes in killer whale activity. We conducted the same analysis across the recent time frame 
(2001-2017), as well, using region-specific estimates of presence probabilities and observer effort 
obtained from this time-period. 
 
Our simulations indicate that, if SRKW activity did not change and only effort changed across 
the two time-periods, the first observation would be expected to shift earlier from 1978-2017, 
especially in Puget Sound (Fig.S11A), perhaps because the number of sightings was very low 
early in the time-series. Thus, the large increase in effort across this time period may affected 
trends in phenological shifts. However, the expected change due to increased effort opposes the 
patterns we observed in for the Central Salish Sea (i.e., we would expect earlier arrival and later 
departure). Further, focusing on 2001-2017 only, effects of changes in effort are likely to be 
minimal (Fig.S11B). Due to the presence only nature of the Orca Master Database, it is difficult 
to fully separate an absence of whales from an absence of observers. We therefore focus our 
interpretation on the recent time-period (2001-2017). 
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Code S1: Code for Southern resident killer whale presence models (Equations 1-2) 
 
### limedat = SRKW presence/absence data from Lime Kiln ### 
m2 <- brm(AllSRpres ~ s(day) + (day|year),  

data=limedat,  
family =bernoulli(), cores = 4, 

   iter = 4000, warmup = 1000, thin = 10,  
 control = list(adapt_delta = 0.99))   
 
j2 <- brm(Jpres ~ s(day) + (day|year),  
 data=limedat,  

family =bernoulli(), cores = 4,  
 iter = 4000, warmup = 1000, thin = 10, 
 control = list(adapt_delta = 0.99)) 
  
 k2 <- brm(Kpres ~ s(day) + (day|year),  

data=limedat,  
family =bernoulli(), cores = 4,  
iter = 4000, warmup = 1000, thin = 10,  
control = list(adapt_delta = 0.99, max_treedepth=15))  

 
 l2 <- brm(Lpres ~ s(day) + (day|year),  

data=limedat,  
family =bernoulli(), cores = 4,  
iter = 4000, warmup = 1000, thin = 10,  
control = list(adapt_delta = 0.99, max_treedepth=15))  

 
 
Code S2: Code for Fraser River Chinook salmon abundance index model (Equations 3-4) 
 
#dat = albion dest fishery data, available at 
#https://www.pac.dfo-mpo.gc.ca/fm-gp/fraser/docs/commercial/albionchinook-quinna-eng.html 
 
dat<-dat[dat$year>1993,] 
dat$effort<-as.numeric(dat$effort)  
dat$year2<-as.factor(dat$year)  
dat$calDay<-as.numeric(dat$calDay)  
dat$catch<-as.numeric(dat$catch)  
dat$cpue1<-dat$cpue+.001  
dat$logcpue<-log(dat$cpue1)  
 
m <- brm(logcpue~ s(calDay) + (calDay|year2),  

data=dat, chains = 2,  
iter = 6000, warmup = 1000, thin = 10,  
 control = list(adapt_delta = 0.99, max_treedepth=15))  
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Code S3: JAGS code for pod-specific occupancy models (Equation 5) 
 
model {### Define seasonal and annual patterns in occurrence probability 

 
for (m in 1:nyear) {  
 for (i in 1:n) {  
  logit(psi[m,i]) <- lp[m,i]  
  lp[m,i] <- mfe[m,i]+mre[m,i]  
  mfe[m,i] <- a[m]*X[i,1]+b[m]*X[i,2]+c[m]*X[i,3]  
  mre[m,i]<-sum(n.mre[m,i,1:nknots])  
  for (k in 1:nknots) {  
  n.mre[m,i,k]<-b.k[m,k]*Z[i,k]  
  }  
 }  

  
### Random regression coefficients corresponding to the truncated polynomial functions  
for (k in 1:nknots) {  
 b.k[m,k] ~ dnorm(0,taub) 
 }  

  
### Fixed regression coefficients corresponding to the 'plus' functions  

 
a[m] ~ dnorm(0,0.01)  
b[m] ~ dnorm(0,0.01)  
c[m] ~ dnorm(0,0.01)  
 }  
### precision for random regression coefficients corresponding to the truncated polynomial function  
 
taub~dgamma(1.0E-6,1.0E-6)  
 
# Specify priors for detection model  
 for (i in 1:nsite){#  
  for (y in 1:nyear) {  
  p[i,y] ~ dunif(0, 1)  
  }  
 }  
# Ecological submodel: Define state conditional on parameters  

 
 for (y in 1:nyear) {  
  for (i in 1:n) {  
  z[y,i] ~ dbern(psi[y,i])  
  }  
 }  
# Observation model  
 for (i in 1:nobs){  
  muy[site[i],survey[i],year[i]] <- z[year[i],survey[i]]*p[site[i],year[i]]  
  y[i] ~ dbin(muy[site[i],survey[i],year[i]], nrep[i])  

  } 
 
} 
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Supplemental Tables 
 
Table S1: Data types and sources included in our analyses. 
 

Region Species Data Source Data Type Spatial Scale Temporal Scale 

Central 
Salish 
Sea 

SRKW Lime  Kiln  Point   
State Park Standardized effort Local  

(single point) 
1994-2017,  

daily 
May-Sept 

SRKW Orca Master (The Whale 
Museum, 2018) 

Presence-only, 
crowd-sourced 

Regional 
(multiple points) 

1978-2017,   
opportunistic 
observations 

Chinook 
salmon Albion test fishery Standardized effort Local  

(transect) 

1992-2017,  
daily 

April-Oct 

Puget 
Sound 
Proper 

SRKW Orca Master (The Whale 
Museum, 2018) 

Presence-only, 
crowd-sourced 

Regional 
(multiple points) 

1978-2017,   
opportunistic 
observations 

Chinook, coho, 
Chum salmon 

WDFW count data from 
7 streams 

Standardized effort Local  
(13 points) Variable (see Table S2) 

 
 

Table S2: Salmon runs in Central Salish Sea and Puget Sound Proper included in our 
analyses. 

 
Region Location Species Origin Latitude (˚) Longitude (˚) 
Central Salish Sea ALBION TEST FISHERY Chinook wild/hatchery 49.2104 -122.6228 

Puget Sound Proper 

CEDAR RIVER HATCHERY Chinook wild 47.3761 -121.9625 
CEDAR RIVER HATCHERY coho wild 47.3761 -121.9625 
GARRISON HATCHERY chum wild 47.1915 -122.5741 
GEORGE ADAMS HATCHERY chum hatchery 47.3013 -123.1818 
GEORGE ADAMS HATCHERY Chinook hatchery 47.3013 -123.1818 
HOODSPORT HATCHERY chum hatchery 47.407 -123.1399 
HOODSPORT HATCHERY Chinook hatchery 47.407 -123.1399 
MCKERNAN HATCHERY chum hatchery 47.3066 -123.203 
MINTER CR HATCHERY chum hatchery 47.3726 -122.7026 
MINTER CR HATCHERY Chinook hatchery 47.3726 -122.7026 
MINTER CR HATCHERY coho wild 47.3726 -122.7026 
MINTER CR HATCHERY coho hatchery 47.3726 -122.7026 
SOOS CREEK HATCHERY chum wild 47.3093 -122.1688 
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Table S3: Salmon phenology has shifted later in part of the Central Salish Sea 
(based on spring/summer Chinook in the Albion Test Fishery data, from 1995-2017) 
and earlier in Puget Sound Proper (based on 13 runs across coho, chum, and 
Chinook adult in Table S1, from 1997-2017). Estimated linear trends are shown for 
peak, first, and last likely occurrence dates for salmon. ‘Peak’ is the day of year with 
the maximum estimated abundance index. To estimate the start of the season, we 
identified the earliest day of year with an estimated abundance index >0.001 catch 
per unit effort (CPUE) for Albion test fishery data in the central Salish Sea, and fish 
counts greater than 0 for Puget Sound stream counts. To estimate the end of the 
season, we identified the latest day of year CPUE or count greater than these values. 
50 percent, 75 percent, and 95 percent uncertainty intervals are shown. 

 
Region season phase mean 25% 75% 12.5% 87.5% 2.5% 97.5% 

Central Salish Sea 
summer peak 0.815 0.709 0.922 0.631 0.999 0.492 1.139 
summer first 3.331 2.861 3.802 2.52 4.143 1.903 4.76 
summer last -0.071 -0.174 0.032 -0.249 0.107 -0.385 0.243 

Puget Sound Proper 
fall peak -0.318 -0.416 -0.22 -0.486 -0.15 -0.605 -0.031 
fall first -0.719 -0.859 -0.579 -0.958 -0.48 -1.128 -0.311 
fall last -0.659 -0.755 -0.562 -0.823 -0.494 -0.94 -0.377 
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Table S4: Estimated linear trends in peak, first, and last likely occurrence dates 
for southern resident killer whales in Puget Sound proper (‘ps’) during the 
fall/winter (‘fall’, from July through December) and the central Salish Sea (‘css’) 
during the spring/summer (‘sum’, from April through October), from occupancy 
model estimates of presence probabilities. ‘Peak’ is the day of year with the 
maximum probability of presence (or the mean across day of year, if there are 
multiple days with the same peak probability of presence). To estimate the start of 
the season, we identified the earliest day of year with an estimated presence 
probability greater than 0.5. To estimate the end of the season, we identified the 
latest day of year with an estimated presence probability greater than 0.5. 50 percent, 
75 percent, and 95 percent uncertainty intervals are shown. 

 

      
1978-
2017 
trend 

    
2001-
2017 
trend 

  

pod region season phase mean 25% 75% 12.5% 87.5% 2.5% 97.5% mean 25% 75% 12.5% 87.5% 2.5% 97.5% 
J css sum peak 1.01 0.60 1.43 0.26 1.71 -0.19 2.18 6.49 3.96 9.48 0.95 11.28 -4.05 14.90 
J css sum first -0.76 -0.90 -0.61 -1.01 -0.51 -1.21 -0.32 1.10 0.94 1.21 0.86 1.31 0.70 1.79 
J css sum last 1.12 0.96 1.28 0.86 1.40 0.70 1.63 0.39 0.21 0.60 0.06 0.70 -0.13 0.90 
J ps fall peak 1.17 0.91 1.47 0.71 1.61 0.33 1.93 0.45 -0.67 1.55 -1.41 2.38 -2.81 4.09 
J ps fall first 0.53 0.06 1.00 -0.25 1.28 -0.81 1.82 2.44 1.37 3.45 0.61 4.24 -0.59 5.51 
J ps fall last 0.95 0.49 1.40 0.20 1.73 -0.32 2.27 -1.23 -2.22 -0.28 -2.80 0.22 -3.60 1.09 
K css sum peak 0.93 0.63 1.24 0.41 1.43 0.01 1.78 1.31 0.42 2.24 -0.24 2.83 -1.43 3.91 
K css sum first -0.33 -0.58 -0.07 -0.78 0.11 -1.09 0.42 0.82 0.29 1.55 -0.36 1.89 -0.80 2.63 
K css sum last 0.65 0.42 0.85 0.28 1.02 0.09 1.30 -1.00 -1.57 -0.57 -1.76 0.14 -2.05 1.06 
K ps fall peak 1.75 1.44 2.07 1.21 2.27 0.76 2.62 1.59 0.35 2.78 -0.44 3.75 -1.97 5.67 
K ps fall first 1.62 1.10 2.18 0.70 2.52 0.05 3.15 2.35 1.10 3.63 0.28 4.49 -1.40 6.04 
K ps fall last 2.75 2.21 3.31 1.80 3.69 1.21 4.20 1.27 0.64 1.83 0.39 2.33 -0.42 3.36 
L css sum peak 0.21 -0.04 0.48 -0.20 0.72 -0.52 0.99 -1.14 -2.16 -0.14 -2.80 0.55 -4.02 1.76 
L css sum first -1.79 -2.07 -1.50 -2.26 -1.30 -2.63 -0.92 0.55 0.23 0.87 -0.20 0.96 -0.47 1.48 
L css sum last 1.09 0.85 1.30 0.70 1.43 0.47 1.81 -0.20 -0.40 0.02 -0.51 0.23 -0.88 0.38 
L ps fall peak 1.07 0.87 1.29 0.71 1.43 0.41 1.65 -0.47 -1.03 0.03 -1.42 0.57 -2.21 1.58 
L ps fall first 1.62 0.95 2.32 0.44 2.81 -0.47 3.55 1.38 0.11 2.68 -0.70 3.59 -2.34 4.85 
L ps fall last 1.02 0.23 1.82 -0.30 2.28 -1.16 3.00 -1.82 -2.44 -1.17 -2.93 -0.75 -3.92 0.23 
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Supplemental Figures 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1: The phenophases quantified in this study included day of year of first 
and last occurrence, as well as day of year of peak occurrence probability for southern 
resident killer whales and peak abundance index for salmon. 
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Figure S2: Sightings of SRKWs from the Orca Master Database, from 1978-2017.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S3: Number of whale days from the Orca Master Database, from 1978-2017. 
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Figure S4: Comparison of the abundance index from Albion test fishery CPUE (used in this 
paper) to alternative indices of abundance: total escapement from four index stocks used by 
the Pacific Salmon Commission (PSC 2018), from 1975-2018. Top row shows relationship 
between Albion Test Fishery CPUE to escapement estimates for four spring and summer index 
stocks assessed by the Pacific Salmon Commission in the Fraser River: Fraser Spring-Run 1.2, 
Fraser Spring-Run 1.3, Fraser Summer-Run 1.3, and Fraser Summer Run 0.3. 
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Figure S5: Whale days and estimated Chinook abundance have declined at Lime 
Kiln State Park since 1994. We show observed and modeled numbers of whale days 
from our Lime Kiln occupancy model, across all pods (A), J pod (B), K pod (C), and 
L pod (D), as well as estimated annual catch per unit effort (CPUE, catch per thousand 
fathom minutes, E), from our abundance index model fit to Albion test fishery data 
from May through September across all Chinook. Shading shows 75th percentile 
uncertainty intervals. 
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Figure S6: SRKW phenology has shifted at one site with consistent observations 
in the Central Salish Sea. Phenology (blue lines) is quantified from Lime Kiln 
Point State Park, SRKW phenology has shifted, with peak arrival dates delaying in 
recent (solid lines) compared with earlier (dashed lines) years. We show patterns for 
J-pod (A), K-pod (B), and L-Pod (C). Compare to Fig. 3A of the main text, which 
shows all pods together. Shading and error bars show 75% uncertainty intervals. 
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Figure S7: Changing the break-point has little qualitative effect on patterns of shifts 
in SRKW and Fraser River Chinook phenology. We show patterns for all SRKW pods 
together (as in Figure 3 in the main text) with different breakpoints of 2005 (A,B), 2006 
(C,D, as in Fig. 3 & 5 in main text) and 2007 (E,F). SRKW phenology (blue lines, A,C,E) 
is quantified from Lime Kiln Point State Park; Fraser River Chinook phenology is 
quantified using the Albion test fishery dataset (B,D,F). An index of adult Fraser River 
Chinook salmon (summed daily CPUE from this dataset, from April through August, pink 
lines) and SRKW phenology have shifted, with peak occupancy and abundance dates 
delaying in recent (solid lines) compared with earlier years (dashed lines). Shading and 
error bars show 75% uncertainty intervals. 
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Figure S8: J-pod occurrence varies seasonally in the Central Salish Sea (A) and 
Puget Sound proper (C). This phenology has shifted later in recent years in the 
Central Salish Sea (B), but has not shifted consistently in Puget Sound (D), as 
measured by peak occurrence probabilities. The shift toward later arrival in the 
central Salish Sea is evident the estimated probabilities of occurrence from the 
occupancy models for J-pod (A) as well as the linear trends in peak occurrence 
probability from 2001-2017 (B). Shading around lines represents 75% uncertainty 
intervals. See also Table S4.
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Figure S9: K-pod occurrence varies seasonally in the Central Salish Sea (A) and 
Puget Sound proper (C). This phenology has shifted later in recent years in the 
Central Salish Sea (B) and in Puget Sound (D). The shift toward later arrival is 
evident the estimated probabilities of occurrence from the occupancy models for K-
pod (A,C) as well as the linear trends in peak occurrence probability from 2001-2017 
(B,D). Shading around lines represents 75% credible intervals. See also Table S4.
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Figure S10: L-pod occurrence varies seasonally in the Central Salish Sea (A) and 
Puget Sound proper (C). This phenology has shifted earlier in recent years in the 
central Salish Sea as measured by peak occurrence probability (B), but peak 
occurrence date timing as not shifted consistently in Puget Sound (D). Figures show 
estimated probabilities of occurrence from the occupancy models for L-pod (A,C) 
and linear trends in peak occurrence probability from 2001-2017 (B,D). Shading 
around lines represents 75% credible intervals. See also Table S4.
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Figure S11: Expected change in phenology due to changes in effort alone, across 
Puget Sound and the Central Salish Sea regions, from 1978-2017 (A) and from 2001-
2017 (B). Error bars represent 75% uncertainty intervals. 


