Supplemental Materials: Supplement 1

Example of calculating a weighted average for a buffer-level covariate

In this example we use percent forb cover at the 400m scale to illustrate how we calculated the average percent understory cover of forbs covariate. To calculate our weighted average (ω), we weighted each stand-specific covariate measurement (M_i where *i* indexes the stand) by the percentage of RCW habitat within the buffer that was made up by that stand (H_i).

 $\omega = H_1 * M_1 + H_2 * M_2 + H_3 * M_3 + \ldots + H_n * M_n$

For example, if forb cover was 50% in a stand that made up 60% of total RCW habitat within the 400m buffer, and forb cover was 80% in a stand that made up 40% of the total RCW habitat in the 400m buffer, the weighted average was calculated as:

 $\omega_{forb} = 0.5 * 0.6 + 0.8 * 0.4$ $\omega_{forb} = 0.62$

Tables & Figures

Table S1: Requirements for Good Quality Foraging Habitat for red-cockaded woodpeckers (*Dryobates borealis;* RCW) according to the Recovery Standards in the RCW Recovery Plan (USFWS 2003); BA = basal area, DBH = diameter at breast height.

Stratum	Requirement					
Overstory	BA of all pines ≥ 25.4 cm, DBH ≥ 2.1 m ² /ha					
	Overstory hardwoods $\leq 10\%$ of overstory trees in longleaf pine stands					
	Overstory hardwoods $\leq 30\%$ of overstory trees in loblolly stands					
Midstory	Sparse to non-existent hardwood midstory					
Understory	Herbaceous understory cover $\geq 40\%$					
Fragmentation	Foraging habitat is not separated by > 61 m of non-foraging areas such as predominantly hardwood forest, pine stands < 30 years in age, cleared land, paved roadways, utility rights of way, and bodies of water					

Table S2: Covariates measured within 400 m or 800 m of red-cockaded woodpecker clusters (*Dryobates borealis*; RCW) with an indicator δ with posterior mean ≥ 0.5 , which according to stochastic search variable selection indicates that the covariate is important in the model. The δ posterior mean associated with a covariate (row) in a model of red-cockaded woodpecker reproductive output (column) is recorded.

Measured within				Measured within			
400 m of the	Number of	If $\geq 1 \text{ egg}$	Proportion of	800 m of the	Number of eggs	If $\geq 1 \text{ egg}$	Proportion of
cluster	eggs lost	was lost	eggs lost	cluster	lost	was lost	eggs lost
Mean BA of				Mean BA of			
pines with ≥ 25.4		0.74		pines with ≥ 25.4		0.81	
cm DBH				cm DBH			
Mean BA of				Mean BA of			
pines with < 25.4	0.52	0.71	0.84	pines with < 25.4			
cm DBH but with	0.32			cm DBH but with			
\geq 10 cm DBH				\geq 10 cm DBH			
Number of active				Number of active			
RCW clusters	0.60			RCW clusters			
within the buffer				within the buffer			
Mean number of				Mean number of			
days since RCW				days since RCW		0.54	
habitat has been				habitat has been		0.34	
burned				burned			
Mean number of				Mean number of			
years since RCW				years since RCW		0.62	
habitat has been				habitat has been		0.05	
burned				burned			
% RCW habitat				% RCW habitat			
last burned	0.66	0.60	0.50	last burned during	0.75	0.62	0.54
during the	0.00	0.00	0.50	the dormant	0.75	0.02	0.34
dormant season				season			
% RCW habitat				% RCW habitat			
last burned	0.67	0.60	0.50	last burned during	0.75	0.61	0.53
during the	0.07			the growing	0.75		
growing season				season			

Basal area of pine trees with DBH \ge 25.4 cm (800 m)

Figure S1: Estimated relationship between the mean basal area of pines with ≥ 25.4 cm diameter at breast height (DBH) within 800m of the red-cockaded woodpecker (*Dryobates borealis*; RCW) cluster and the probability that ≥ 1 egg was lost. Black dots are the posterior mean and grey shading shows the 95% Bayesian credible intervals from the model with the covariates mean basal area of pines with ≥ 25.4 cm DBH within 800m and percent RCW habitat last burned during the growing season within 800m. Black x's indicate observed data, where 0 indicates all eggs produced hatchlings and 1 indicates at least 1 egg was lost.

Basal area of pine trees with DBH \geq 10 cm and < 25.4 cm (400 m)

Figure S2: Estimated relationship between basal area of pine trees with diameter at breast height $(DBH) \ge 10 \text{ cm}$ and < 25.4 cm within 400 m of a red-cockaded woodpecker (*Dryobates borealis*; RCW) cluster and the proportion of eggs that were lost. Black dots are the posterior mean and grey shading shows the 95% Bayesian credible intervals from the model with the covariates mean BA of pines with < 25.4 cm DBH but with $\ge 10 \text{ cm}$ DBH within 400m and percent RCW habitat last burned during the growing season within 800m. Black x's indicate observed data, where 0 indicates all eggs produced hatchlings and 1 indicates all eggs were lost.

Proportion of RCW habitat last burned during the dormant season (800 m)

Figure S3: Estimated relationship between percent of red-cockaded woodpecker (*Dryobates borealis*; RCW) habitat last burned during the dormant season within 800m of the RCW cluster and the number of eggs lost. Black dots are the posterior mean and grey shading shows the 95% Bayesian credible intervals from the model with the covariates mean basal area of pines with < 25.4 cm diameter at breast height (DBH) but with ≥ 10 cm DBH within 400m, number of active RCW clusters within 400m, and percent RCW habitat last burned during the dormant season within 800m. Black x's indicate observed data.

Proportion of RCW habitat last burned during the growing season (800 m)

Figure S4: Estimated relationship between percent of red-cockaded woodpecker (*Dryobates borealis*; RCW) habitat last burned during the growing season within 800m of the RCW cluster and the number of eggs lost. Black dots are the posterior mean and grey shading shows the 95% Bayesian credible intervals from the model with the covariates mean basal area of pines with < 25.4 cm diameter at breast height (DBH) but with ≥ 10 cm DBH within 400m, number of active RCW clusters within 400m, and percent RCW habitat last burned during the growing season within 800m. Black x's indicate observed data.

Figure S5: Estimated relationship between the number of red-cockaded woodpecker (*Dryobates borealis*; RCW) eggs that were lost and whether there was another active RCW cluster within 400 m. The violin plot shows the distribution of the posterior means from clusters, and the boxplots display the mean (white dot) and quantiles of the posterior means from clusters from the model with covariates mean basal area of pines with < 25.4 cm diameter at breast height (DBH) but with \geq 10 cm DBH within 400m, number of active RCW clusters within 400m, and percent RCW habitat last burned during the growing season within 800m.

		Number of			Democrat of	Damagent of	Democrat of	Demonst of mosts
		Number of	No	Nf	Percent of	Percent of	Percent of	Percent of nests
	No 1 f	eggs natched	Number of	Number of	eggs that	nestlings	nests with	that failed to
	Number of	(nestlings)	fledglings	eggs lost	did not	that did	partial	produce
	eggs per nest	per nest	per nest	per nest	hatch	not fledge	brood loss	fledglings
MCBCL (Williamson	3.41		1.66	1.38				
et al. 2016)	(3.29-3.53)		(1.58-1.75)	(1.31-1.45)				
SH (Williamson et al.	3.31		1.79	1.12				
2016)	(3.26-3.37)		(1.75-1.83)	(1.09-1.14)				
EAFB (Williamson et	2.99		1.25	1.38				
al. 2016)	(2.76-3.23)		(1.10-1.41)	(1.26-1.51)				
Wood et al. 2014	3.2	2.8	2.0					
	3.35	2.56 (± 10.13						
McCormick et al. 2003	(± 0.12 SE)	SE)			23.4%	20.6%	35.3%	
LaBranche & Walters								
1994	3.3	2.3	1.9				27.0%	21.6%
Butler & Tappe 2008								27.6%
	3.2±0.4	2.1±0.4	1.5 ± 0.4					(12.7-47.2%)
Longleaf (Schaefer et								
al. 2004)	3.19		1.60					
Loblolly-shortleaf								
(Schaefer et al. 2004)	3.39		1.91					
Wigley et al. 1999	3.3 (range=1-		1.8 (range					
	4, SE=0.1)		=1-3, SE=0.3)					22%
1990			1.05,					
(Beyer et al. 1996)			SE = 0.09					
1991			0.92,					
(Beyer et al. 1996)			SE = 0.09					
1992			1.31,					
(Beyer et al. 1996)			SE = 0.10					
1993			1.24,					
(Beyer et al. 1996)			SE = 0.10					

Table S3: Rates of reproductive output and brood loss reported in previous studies. MCBLC = Marine Corps Base Camp Lejeune, SH = North Carolina Sandhills, EAFB = Eglin Air Force Base. Numbers in parentheses are bounds of 95% confidence intervals.

Literature Cited

- Beyer E, Costa R, Hooper RG, Hess CA (1996) Habitat quality and reproduction of Redcockaded woodpecker groups in Florida. J Wildl Manag 60:826–835 <u>https://doi.org/10.2307/3802383</u>
- Butler MJ, Tappe PA (2008) Relationships of red-cockaded woodpecker reproduction and foraging habitat characteristics in Arkansas and Louisiana. Eur J Wildl Res 54:601–608 https://doi.org/10.1007/s10344-008-0184-9
- LaBranche MS, Walters JR (1994) Patterns of mortality in nests of red-cockaded woodpeckers in the Sandhills of Southcentral North Carolina. Wilson Bull 106:258–271
- McCormick JR, Conner RN, Burt DB, Saenz D (2003) Influence of habitat and number of nestlings on partial brood loss in red-cockaded woodpeckers. In: Red-cockaded woodpecker: road to recovery. Hancock House Publishers, Blaine, WA, p 624-629
- Schaefer RR, Conner RN, Rudolph DC, Saenz D (2004) Red-cockaded woodpecker nestling provisioning and reproduction in two different pine habitats. Wilson Bull 116:31–40 http://dx.doi.org/10.1676/0043-5643(2004)116%5b0031%3ARWNPAR%5d2.0.CO%3B2
- US Fish and Wildlife Service (2003) Recovery plan for the red-cockaded woodpecker (Picoides borealis): second revision. U.S. Fish and Wildlife Service, Atlanta, Georgia, USA
- Wigley TB, Sweeney SW, Sweeney JR (1999) Habitat attributes and reproduction of redcockaded woodpeckers in intensively managed forests. Wildl Soc Bull 27:801–809
- Williamson L, Garcia V, Walters JR (2016) Life history trait differences in isolated populations of the endangered red-cockaded woodpecker. Ornis Hung. 24:55–68 https://doi.org/10.1515/orhu-2016-0003
- Wood DR, Burger LW Jr, Vilella FJ (2014) Red-cockaded woodpecker *Picoides borealis* microhabitat characteristics and reproductive success in a loblolly-shortleaf pine forest. Open Ornithol 7:49–54 <u>https://doi.org/10.2174/1874453201407010049</u>