Extended Supplementary Material

Evaluation of environmental predictors

We evaluated (1) the degree to which the potential environmental predictor variables differentiated nest sites from background sites; and (2) correlations among predictor variables. Our selection of the full suite of predictor variables was based on justifiable, limited information, so it was important for us to evaluate which variables contained redundant information. Our evaluation consisted of two steps. First, we used principal components analysis (PCA) to visualize the interrelationships among the variables and evaluate the degree to which nest sites and randomly located background sites within the modeling domain diverged along the PCA axes. For background data we randomly selected 1960 points (equal to the number of grid-cells in the modeled domain with petrel nest sites) from the entire modeling domain, then used the rda function in the vegan package in R (Oksanen et al. 2020) for PCA. Variables were standardized and we retained eigen vectors (i.e. the PCA axes) with eigenvalues > 1. Two of the variables, Mean Growing Season (MGS) Normalized Difference Vegetation Index (NDVI) and Length of Growing Season (LOS), had little variation and distorted the PCA axes; therefore, they were dropped from the predictive modeling. Vectors of the variables along the PCA axes were used to make an initial evaluation of their relationships to one another. To evaluate overlap in ordination space, we generated 95% confidence ellipses around the PC ordination space for predictor variables associated with nest site and background sites separately.

The first four PCA axes explained 81.3% of the variation among the 13 continuous predictor variables (Table S1). The first axis (36.9% variation explained) was dominated by multi-scaled roughness indices, the second by multi-scaled Topographic Position Index (TPI; 22.5%), the third (13.8%) by elevation, wind and rain, and the fourth (8.1%) by Heat Load Index (HLI). The PCA indicated nest sites differed from background sites along gradients defined by the predictor variables (Fig. S1). There was some overlap in 95% confidence ellipses, but environmental conditions at nest sites clearly diverged from background conditions along multiple gradients defined by the predictor variables (Fig. S1).

Most of the pairwise correlations for 1960 grid-cell locations containing nest site counts (Table S2) were of weak to moderate strength, but some stronger ones did occur (Fig. S2). Mean Growing Season NDVI (MGS) and length of growing season (LOS) were strongly correlated (r = 0.96), and roughness values at all four scales were strongly correlated among themselves and with slope ($0.73 \le r \ge 0.97$). TPI03, TPI05 and TPI10 also were strongly correlated ($0.76 \le r \ge 0.97$), but TPI100 was less correlated with finer-scale TPI ($0.23 \le r \ge 0.35$) (Fig. S2). Based on correlations and the PCA, we retained a set of ten predictor variables for predictive RF modeling (Table 2). In preliminary model runs, MGS had negative variable importance (VI; see Model performance, below) values within each model group; therefore, we excluded MGS and LOS from the final model (Model 1).

References

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. and Wagner, H., 2020. Vegan: community ecology package. R package version 2.3-0; 2015. Scientific Reports, 10, p.20354. **Table S1.** Results of a principal components analysis (PCA) of 13 variables used to predict Hawaiian petrel nest site density on Haleakalā, east Maui. The four PC axes with eigenvalues (λ) >1 are shown. Variables include Elevation, Heat Load Index (HLI), roughness at four scales, slope, Topographic Position Index (TPI) at four scales, rain, and wind. Definitions are provided in Table 2.

	Axis 1	Axis 2	Axis 3	Axis 4
λ	4.800	2.924	1.794	1.052
Variation (%)	0.369	0.225	0.138	0.081
Cumulative Variation (%)	0.369	0.594	0.732	0.813
Variable				
Elevation	2.060	-1.695	-2.753	-0.299
HLI	-0.292	-0.278	-0.087	3.983
Rough03	3.499	1.857	0.092	-0.129
Rough05	3.604	1.847	0.092	-0.122
Rough10	3.717	1.502	0.136	-0.115
Rough100	2.502	1.317	0.932	0.960
Slope	3.546	1.584	-0.073	0.310
TPI03	1.439	-3.139	1.926	-0.035
TPI05	1.551	-3.247	1.901	-0.034
TPI10	2.661	-2.368	1.311	0.227
TPI100	2.512	-1.970	-0.719	-0.128
Rain	-0.065	1.085	2.460	-1.027
Wind	1.818	-1.842	-2.655	-0.361

Fig. S1. Principal components analysis (PCA) of 13 potential environmental variables evaluated to predict Hawaiian petrel nest sites on Haleakalā, east Maui. There were 1960 100-m² grid cells with nest sites present and an equal number of randomly selected out of 50 000 total background grid cells used in the PCA. 95% confidence ellipses for the nest-site cells (red shaded) and randomly selected background cells (blue shaded) are shown for axes 1 and 2 (a) and 2 and 3 (b).

	Elevation	HLI	Slope	Rain	Wind	LOS	MGS	Rough03	Rough05	Rough10	Rough100	TPI03	TPI05	TPI10	TPI100
Elevation	1.000														
HLI	0.051	1.000													
Slope	0.038	0.115	1.000												
Rain	-0.324	-0.235	0.178	1.000											
Wind	0.572	0.120	-0.012	-0.189	1.000										
LOS	-0.083	0.001	-0.007	-0.033	-0.098	1.000									
MGS	-0.090	0.006	-0.007	-0.034	-0.102	0.972	1.000								
Rough03	-0.027	-0.044	0.789	0.165	-0.055	-0.015	-0.016	1.000							
Rough05	-0.025	-0.036	0.817	0.179	-0.054	-0.017	-0.017	0.976	1.000						
Rough10	-0.016	-0.019	0.823	0.196	-0.048	-0.018	-0.019	0.899	0.958	1.000					
Rough100	-0.051	0.137	0.734	0.186	-0.060	0.003	0.001	0.554	0.596	0.653	1.000				
TPI03	0.021	0.004	0.019	0.024	0.017	-0.007	-0.008	0.006	0.014	0.022	0.011	1.000			
TPI05	0.025	0.001	0.018	0.029	0.022	-0.008	-0.008	0.010	0.017	0.029	0.014	0.971	1.000		
TPI10	0.028	0.126	0.143	0.044	0.023	-0.041	-0.045	0.124	0.140	0.170	0.197	0.687	0.758	1.000	
TPI100	0.213	0.027	0.195	0.146	0.321	-0.024	-0.021	0.123	0.131	0.150	0.077	0.226	0.270	0.356	1.000

Table S2. Pairwise Pearson correlations between potential predictor variables for modeling Hawaiian petrel nesting sites on Haleakalā, east Maui. Correlations are based on 1960 grid-cell locations containing nest site counts.

Fig. S2. Graphical representation of pairwise correlations among 15 variables evaluated to predict Hawaiian petrel nest site density on Haleakalā, east Maui. Correlations are based on 1960 grid-cell locations containing nest site counts. Variable names and definitions are provided in Table 2.

Model performance

We used three measures to evaluate performance within and between the models: (1) the stability of the model mean squared error (MSE) as the number of trees increased; (2) the MSE of the cross-validations; and (3) comparison with ordinary least square regression of pseudo- R^2 values (1 – [MSE/ σ^2]) between training and test sets. Because MSE was expressed as a proportion, we used beta regression to compare values between the training and test datasets using package *betareg* in R (Cribari-Neto & Zeileis 2010). We used the absolute and proportional differences in predicted values as two additional measures of differences between models. We randomly selected 1000 grid cells from the prediction maps for each model and then did pairwise comparisons (N = 6) among them. The absolute differences were summarized in histograms (Fig. S3) and proportional differences were illustrated using empirical cumulative distribution functions (ECDF) (Fig. S4).

We evaluated variable importance (VI) as the proportional increase in MSE when a variable was not included in the models. The *randomForest* package in R returns VI as means and SDs across model runs. Therefore, to ensure uncertainty was propagated appropriately in the estimates, we used a simple Bayesian approach to calculate VI for each predictor across the 100 spatially thinned sets. Because VI is continuous and can be positive or negative, we estimated

 $VI_i \sim N(\mu_i, \sigma_i)$

 $\mu_i \sim N(\vartheta, \rho)$

 $\vartheta \sim N(0,1)$

 $\rho \sim Uniform(0,10)$

where σ_i are the SDs of each thinned set *i*, and ϑ and ρ are the overall mean estimate and its SD, respectively. We used the *R2jags* package in R (Su & Yajima, 2021) to implement Gibbs sampling of three Markov chain Monte Carlo chains with a burn-in of 1000 followed by 10 000 iterations with a thinning rate of 10, giving point estimates and 95% credible intervals from 3000 samples of the posterior distribution.

Gelman-Rubin statistics, effective number of samples (n.eff), and inspection of trace plots all indicated strong convergence of Bayesian estimates of VI; Gelman-Rubin statistics were \leq 1.001 for all parameters, effective number of samples ranged from 10 000–30 000, and the chains in the trace plots showed complete mixing (figures not shown).

References

Cribari-Neto, F. and Zeileis, A., 2010. Beta regression in R. Journal of statistical software, 34, pp.1-24.

Su, Y.S. and Yajima, M., 2021. R2jags: Using R to Run 'JAGS'. R package version 0.6-1; 2020. URL https://CRAN. R-project. org/package= R2jags.

Table S3. Estimates and standard error (SE) of differences in mean square error (MSE) between training (75% of data) and test (25%) sets in each of 100 spatially-thinned datasets in four model groups with different combinations of predictor variables for modeling Hawaiian petrel nesting sites on Haleakalā, east Maui (see Table 2 for variables in the Topography, Substrate, Vegetation and Climate groups).

Model 1 = Topog	raphv + Substrat	te + Vegeta	ition	
	Estimate	SE	Z	Р
Intercept	-2.943	0.020	-146.031	< 0.0001
Train	0.045	0.004	11.237	< 0.0001
2	-0.050	0.029	-1.727	0.084
3	-0.059	0.029	-2.066	0.039
4	-0.118	0.029	-4.057	< 0.0001
5	-0.030	0.029	-1.052	0.293
6	-0.150	0.029	-5.117	< 0.0001
7	-0.007	0.028	-0.230	0.818
8	-0.057	0.029	-1.986	0.047
9	0.031	0.028	1.108	0.268
10	-0.066	0.029	-2.292	0.022
11	-0.068	0.029	-2.364	0.018
12	-0.079	0.029	-2.740	0.006
13	0.178	0.027	6.519	< 0.0001
14	0.075	0.028	2.703	0.007
15	-0.141	0.029	-4.807	< 0.0001
16	-0.077	0.029	-2.659	0.008
17	-0.019	0.028	-0.665	0.506
18	-0.041	0.029	-1.449	0.147
19	-0.045	0.029	-1.573	0.116
20	-0.035	0.029	-1.232	0.218
21	0.005	0.028	0.174	0.862
22	-0.129	0.029	-4.426	< 0.0001
23	0.041	0.028	1.463	0.144
24	-0.123	0.029	-4.226	< 0.0001
25	0.137	0.028	4.958	< 0.0001
26	0.013	0.028	0.473	0.636
27	0.140	0.028	5.096	< 0.0001
28	-0.003	0.028	-0.101	0.920
29	-0.027	0.029	-0 939	0 348
30	0.001	0.028	0.040	0.968
30	0.001	0.020	5 575	< 0.0001
32	-0 143	0.029	-4 866	< 0.0001
32	0.145	0.025	2 070	0.038
34	-0.180	0.020	-6 101	< 0.0001
35	-0.011	0.030	-0 371	0 711
36	0.011	0.028	1 497	0.134
37	0.071	0.028	2 530	0.134
38	-0.071	0.020	-2.550	0.011
30	0.071	0.025	6 3 2 8	< 0.0014
40	0.175	0.027	0.328	0.0001
40	-0.008	0.028	-0.223	0.023
41	-0.008	0.028	-0.278	0.781
42	-0.059	0.029	2.049	0.041
45	-0.000	0.029	-2.075	0.038
44 /C	0.043	0.020	1.520	0.129
40 AC	0.000	0.020	0.274	0.764 < 0.0001
40	-0.113	0.029	-3.000	< 0.0001 0.210
47		0.029	-1.253	0.210
4ð 40	0.15/	0.027	5.725	< 0.0001
49 50	0.033	0.028	1.128	0.247
50	0.020	0.028	0.094	U.40Ö

Table S3	continued.
----------	------------

	Estimate	SE	Z	Р
51	0.066	0.028	2.365	0.018
52	-0.074	0.029	-2.563	0.010
53	-0.089	0.029	-3.084	0.002
54	-0.084	0.029	-2.911	0.004
55	-0.082	0.029	-2.834	0.005
56	-0.041	0.029	-1.424	0.154
57	-0.061	0.029	-2.123	0.034
58	0.042	0.028	1.498	0.134
59	0.110	0.028	3.982	< 0.0001
60	-0.229	0.030	-7.636	< 0.0001
61	0.166	0.027	6.073	< 0.0001
62	0.012	0.028	0.428	0.668
63	-0.021	0.028	-0.722	0.470
64	-0.011	0.028	-0.374	0.708
65	-0.012	0.028	-0.432	0.666
66	-0.056	0.029	-1.939	0.053
67	0.125	0.028	4.547	< 0.0001
68	-0.058	0.029	-2.006	0.045
69	-0.049	0.029	-1.692	0.091
70	-0.155	0.029	-5.267	< 0.0001
71	-0.001	0.028	-0.025	0.980
72	-0.053	0.029	-1.846	0.065
73	-0.030	0.029	-1.052	0.293
74	0.076	0.028	2.738	0.006
75	-0.079	0.029	-2.725	0.006
76	0.108	0.028	3.916	< 0.0001
77	0.007	0.028	0.241	0.809
78	0.048	0.028	1.706	0.088
79	-0.055	0.029	-1.910	0.056
80	0.040	0.028	1.439	0.150
81	-0.071	0.029	-2.472	0.013
82	0.056	0.028	1.995	0.046
83	-0.101	0.029	-3.467	0.001
84	0.059	0.028	2.092	0.036
85	-0.023	0.029	-0.812	0.417
86	-0.087	0.029	-3.006	0.003
87	0.159	0.027	5.795	< 0.0001
88	-0.100	0.029	-3.443	0.001
89	0.026	0.028	0.910	0.363
90	-0.014	0.028	-0.492	0.623
91	0.002	0.028	0.071	0.944
92	-0.032	0.029	-1.136	0.256
93	0.082	0.028	2.944	0.003
94	-0.033	0.029	-1.142	0.253
95	0.021	0.028	0.743	0.457
96	-0.022	0.029	-0.779	0.436
97	-0.066	0.029	-2.282	0.022
98	0.052	0.028	1.845	0.065
99	-0.080	0.029	-2.787	0.005
100	-0.094	0.029	-3.239	0.001

del 2 = Topogr	aphy + Substrat	e		
	Estimate	SE	Z	Р
Intercept	-2.868	0.024	-121.374	< 0.0001
Train	-0.010	0.005	-2.167	0.030
2	-0.043	0.034	-1.289	0.197
3	-0.148	0.034	-4.294	< 0.0001
4	-0.002	0.033	-0.070	0.945
5	-0.079	0.034	-2.323	0.020
6	-0.148	0.034	-4.299	< 0.0001
7	-0.047	0.034	-1.394	0.163
8	-0.125	0.034	-3.660	< 0.0001
9	-0.103	0.034	-3.020	0.003
10	-0.063	0.034	-1.864	0.062
11	-0.123	0.034	-3.611	< 0.0001
12	-0.102	0.034	-3.005	0.003
13	-0.005	0.033	-0.158	0.874
14	0.137	0.032	4.232	< 0.0001
15	-0.074	0.034	-2.189	0.029
16	-0.134	0.034	-3.905	< 0.0001
17	-0.079	0.034	-2.334	0.020
18	-0.075	0.034	-2.219	0.027
19	-0.067	0.034	-1.984	0.047
20	-0.097	0.034	-2.843	0.004
21	0.064	0.033	1.939	0.053
22	-0.017	0.033	-0.518	0.605
23	-0.030	0.033	-0.888	0.375
24	-0.031	0.033	-0.915	0.360
25	-0.001	0.033	-0.020	0.984
26	-0.078	0.034	-2.309	0.021
27	-0.017	0.033	-0.497	0.620
28	-0.004	0.033	-0.130	0.896
29	-0.082	0.034	-2.426	0.015
30	-0.016	0.033	-0.465	0.642
31	0.046	0.033	1.388	0.165
32	-0.142	0.034	-4.128	< 0.0001
33	0.010	0.033	0.303	0.762
34	-0.206	0.035	-5.898	< 0.0001
35	-0.090	0.034	-2.653	0.008
36	0.187	0.032	5.850	< 0.0001
37	-0.037	0.034	-1.093	0.274
38	-0.024	0.033	-0.704	0.481
39	0.052	0.033	1.581	0.114
40	-0.157	0.034	-4.543	< 0.0001
41	-0.090	0.034	-2.652	0.008
42	-0.066	0.034	-1.945	0.052
43	-0.101	0.034	-2.957	0.003
44	0.009	0.033	0.285	0.776
45	-0.137	0.034	-3.980	< 0.0001
46	-0.055	0.034	-1.633	0.103
47	-0.022	0.033	-0.645	0.519
48	0.232	0.032	7.328	< 0.0001
49	-0.075	0.034	-2.215	0.027
50	-0.082	0.034	-2.432	0.015

Table S3 continue	ed.
-------------------	-----

	Estimate	SE	Z	Р	
51	0.169	0.032	5.268	< 0.0001	
52	0.085	0.033	2.617	0.009	
53	-0.066	0.034	-1.965	0.049	
54	-0.172	0.035	-4.972	< 0.0001	
55	-0.055	0.034	-1.648	0.099	
56	-0.027	0.033	-0.793	0.428	
57	-0.083	0.034	-2.444	0.015	
58	-0.086	0.034	-2.524	0.012	
59	-0.005	0.033	-0.141	0.888	
60	-0.151	0.034	-4.383	< 0.0001	
61	-0.005	0.033	-0.160	0.873	
62	-0.065	0.034	-1.929	0.054	
63	-0.164	0.035	-4.740	< 0.0001	
64	-0.002	0.033	-0.050	0.960	
65	-0.037	0.034	-1.100	0.271	
66	-0.083	0.034	-2.463	0.014	
67	0.096	0.033	2.950	0.003	
68	-0.040	0.034	-1.185	0.236	
69	-0.156	0.034	-4.527	< 0.0001	
70	-0.314	0.036	-8.765	< 0.0001	
71	-0.101	0.034	-2.980	0.003	
72	-0.084	0.034	-2.487	0.013	
73	-0.016	0.033	-0.468	0.640	
74	0.138	0.032	4.272	< 0.0001	
75	-0.177	0.035	-5.116	< 0.0001	
76	0.011	0.033	0.336	0.737	
77	-0.053	0.034	-1.571	0.116	
78	-0.058	0.034	-1.719	0.086	
79	-0.053	0.034	-1.571	0.116	
80	-0.059	0.034	-1.754	0.079	
81	-0.087	0.034	-2.566	0.010	
82	0.084	0.033	2.585	0.010	
83	-0.141	0.034	-4.108	< 0.0001	
84	-0.095	0.034	-2.808	0.005	
85	-0.198	0.035	-5.684	< 0.0001	
86	-0.013	0.033	-0.388	0.698	
87	0.062	0.033	1.879	0.060	
88	-0.239	0.035	-6.788	< 0.0001	
89	-0.007	0.033	-0.217	0.829	
90	-0.007	0.033	-0.202	0.840	
91	0.115	0.032	3.531	< 0.0001	
92	-0.072	0.034	-2.132	0.033	
93	0.086	0.033	2.628	0.009	
94	-0.110	0.034	-3.240	0.001	
95	-0.058	0.034	-1.719	0.086	
96	0.061	0.033	1.844	0.065	
97	-0.116	0.034	-3.409	0.001	
98	0.020	0.033	0.612	0.541	
99	0.005	0.033	0.136	0.892	
100	-0.127	0.034	-3.698	< 0.0001	

del 3 = Topogi	raphy + Substrat	e + Vegetat	tion + Climate (wind; no rai
	Estimate	SE	Z	Р
Intercept	-2.749	0.020	-134.625	< 0.0001
Train	0.016	0.004	3.739	< 0.0001
2	-0.157	0.030	-5.276	< 0.0001
3	-0.298	0.031	-9.674	< 0.0001
4	-0.248	0.030	-8.157	< 0.0001
5	-0.211	0.030	-7.001	< 0.0001
6	-0.185	0.030	-6.175	< 0.0001
7	-0.252	0.030	-8.288	< 0.0001
8	-0.261	0.031	-8.551	< 0.0001
9	-0.169	0.030	-5.653	< 0.0001
10	-0.250	0.030	-8.212	< 0.0001
 11	-0 149	0.030	-5 026	< 0.0001
12	-0.200	0.030	-6 667	< 0.0001
12	_0.200	0.030	-/ 516	
17	-0.154	0.030	-4.510	
14	-0.191	0.030		< 0.0001
15	-0.329	0.031	-10.598	< 0.0001
16	-0.091	0.029	-3.120	0.002
1/	-0.197	0.030	-6.565	< 0.0001
18	-0.232	0.030	-7.668	< 0.0001
19	-0.151	0.030	-5.068	< 0.0001
20	-0.279	0.031	-9.095	< 0.0001
21	-0.172	0.030	-5.752	< 0.0001
22	-0.199	0.030	-6.621	< 0.0001
23	-0.213	0.030	-7.063	< 0.0001
24	-0.228	0.030	-7.532	< 0.0001
25	-0.130	0.030	-4.386	< 0.0001
26	-0.242	0.030	-7.979	< 0.0001
27	-0.185	0.030	-6.186	< 0.0001
28	-0.068	0.029	-2.336	0.019
29	-0.216	0.030	-7.146	< 0.0001
30	-0.197	0.030	-6.544	< 0.0001
31	-0.202	0.030	-6.708	< 0.0001
32	-0.314	0.031	-10.147	< 0.0001
33	-0.228	0.030	-7.520	< 0.0001
34	-0.266	0.031	-8 717	< 0.0001
25	-0 198	0.031	-6 603	< 0.0001
36	-0.190	0.030	-6.003	
טכ דכ	-0.204	0.030	-0.776	
3/	-0.135	0.030	-4.559	< 0.0001
38	-0.228	0.030	-7.544	< 0.0001
39	-0.009	0.029	-0.324	0.746
40	-0.196	0.030	-6.537	< 0.0001
41	-0.190	0.030	-6.323	< 0.0001
42	-0.243	0.030	-8.001	< 0.0001
43	-0.262	0.031	-8.580	< 0.0001
44	-0.120	0.030	-4.078	< 0.0001
45	-0.161	0.030	-5.403	< 0.0001
46	-0.298	0.031	-9.675	< 0.0001
47	-0.258	0.030	-8.457	< 0.0001
48	-0.091	0.029	-3.119	0.002
49	-0.219	0.030	-7.239	< 0.0001
50	-0.213	0.030	-7.061	< 0.0001

Table S3 o	continued.
------------	------------

	Estimate	SE	Z	Р	
51	-0.172	0.030	-5.747	< 0.0001	
52	-0.086	0.029	-2.931	0.003	
53	-0.262	0.031	-8.591	< 0.0001	
54	-0.266	0.031	-8.711	< 0.0001	
55	-0.192	0.030	-6.409	< 0.0001	
56	-0.172	0.030	-5.766	< 0.0001	
57	-0.117	0.029	-3.955	< 0.0001	
58	-0.191	0.030	-6.353	< 0.0001	
59	-0.171	0.030	-5.731	< 0.0001	
60	-0.377	0.031	-11.997	< 0.0001	
61	-0.114	0.029	-3.866	< 0.0001	
62	-0.176	0.030	-5.887	< 0.0001	
63	-0.244	0.030	-8.035	< 0.0001	
64	-0.159	0.030	-5.336	< 0.0001	
65	-0.226	0.030	-7.461	< 0.0001	
66	-0.324	0.031	-10.451	< 0.0001	
67	-0.125	0.030	-4.229	< 0.0001	
68	-0.266	0.031	-8.716	< 0.0001	
69	-0.306	0.031	-9.925	< 0.0001	
70	-0.249	0.030	-8.176	< 0.0001	
71	-0.119	0.029	-4.045	< 0.0001	
72	-0.226	0.030	-7.468	< 0.0001	
73	-0.273	0.031	-8.923	< 0.0001	
74	0.038	0.028	1.346	0.178	
75	-0.259	0.031	-8.505	< 0.0001	
76	-0.034	0.029	-1.174	0.240	
77	-0.149	0.030	-5.011	< 0.0001	
78	-0.072	0.029	-2.458	0.014	
79	-0.077	0.029	-2.636	0.008	
80	-0.194	0.030	-6.451	< 0.0001	
81	-0.186	0.030	-6.203	< 0.0001	
82	-0.093	0.029	-3.161	0.002	
83	-0.141	0.030	-4.771	< 0.0001	
84	-0.111	0.029	-3.764	< 0.0001	
85	-0.207	0.030	-6.883	< 0.0001	
86	-0.221	0.030	-7.301	< 0.0001	
87	-0.019	0.029	-0.649	0.516	
88	-0.254	0.030	-8.322	< 0.0001	
89	-0.157	0.030	-5.261	< 0.0001	
90	-0.194	0.030	-6.462	< 0.0001	
91	-0.060	0.029	-2.075	0.038	
92	-0.237	0.030	-7.816	< 0.0001	
93	-0.178	0.030	-5.963	< 0.0001	
94	-0.220	0.030	-7.267	< 0.0001	
95	-0.102	0.029	-3.475	0.001	
96	-0.211	0.030	-7.012	< 0.0001	
97	-0.313	0.031	-10.118	< 0.0001	
98	-0.103	0.029	-3.506	< 0.0001	
99	-0.193	0.030	-6.423	< 0.0001	
100	-0.209	0.030	-6.935	< 0.0001	

		1	0	
	Estimate	SE	Z	Р
ntercept	-2.886	0.021	-139.13	< 0.0001
Train	0.019	0.004	4.419	< 0.0001
2	-0.067	0.030	-2.245	0.025
3	-0.136	0.030	-4.51	< 0.0001
4	-0.065	0.030	-2.184	0.029
5	-0.039	0.029	-1.329	0.184
6	-0.069	0.030	-2.324	0.020
7	-0.123	0.030	-4.108	< 0.0001
8	0.012	0.029	0.426	0.670
9	0.006	0.029	0.218	0.827
10	-0.006	0.029	-0.198	0.843
11	-0.089	0.030	-2.99	0.003
12	0.013	0.029	0.45	0.653
13	0.030	0.029	1.051	0.293
14	0.059	0.029	2.045	0.041
15	-0.096	0.030	-3.208	0.001
16	-0.106	0.030	-3.545	< 0.0001
17	-0.012	0.029	-0.412	0.680
18	-0.129	0.030	-4.276	< 0.0001
_0 19	-0.068	0.030	-2.305	0.021
20	-0.042	0.029	-1 42	0 156
21	-0 142	0.030	-4 713	< 0.0001
21	-0.077	0.030	-2 606	0.000
23	-0 102	0.030	-3 408	0.001
24	-0 196	0.031	-6 408	< 0.0001
25	0.130	0.031	1 312	0.0001
25	0.030	0.029	0 778	0.130
20	-0.025	0.020	-1 51/	0.437
27	-0.045	0.020	-0.369	0.130
20	-0.011	0.020	-2.505	0.712
20	-0.070	0.030	-0.805	0.011
21	0.024	0.025	4 408	< 0.001
27	-0.028	0.020	-0.952	0.0001
22 22	-0.020	0.029	-0.952	0.341
55 21	-0.037	0.029	-1.247	0.212
25	-0.101	0.020	-3.30/	0.001
35 22	-0.078 0 162	0.030	5 765	
טכ רכ	0.103	0.020	2010	0.0001
37 20	-0.060	0.030	-2.009	
3ð 20	-0.124	0.030	-4.12U	< 0.0001 0 173
39	-0.040	0.029	-1.301	0.1/3
40	-0.042	0.029	-1.415	0.15/
41	-0.051	0.030	-1./43	0.081
42	-0.101	0.030	-3.3/3	0.001
43	-0.068	0.030	-2.294	0.022
44	0.079	0.029	2.746	0.006
45	-0.107	0.030	-3.593	< 0.0001
46	-0.093	0.030	-3.111	0.002
47	0.058	0.029	2.009	0.045
48	0.196	0.028	6.991	< 0.0001
49	-0.096	0.030	-3.204	0.001
50	-0.079	0.030	-2.665	0.008

Table S3	continued.
----------	------------

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
54 -0.134 0.030 -4.467 < 0.0001 55 -0.095 0.030 -3.183 0.001 56 0.001 0.029 0.021 0.983 57 -0.064 0.030 -2.177 0.029 58 -0.008 0.029 -0.283 0.777 59 -0.043 0.029 -1.475 0.140 60 -0.103 0.030 -3.440 0.001 61 0.161 0.028 5.716 < 0.0001 62 -0.056 0.030 -1.881 0.060 63 0.023 0.029 0.796 0.426 64 0.015 0.029 0.508 0.611 65 -0.054 0.030 -1.813 0.070 66 -0.159 0.030 -5.242 < 0.0001 67 0.013 0.029 0.448 0.654 68 -0.041 0.029 -1.403 0.161 69 -0.110 0.030 -3.677 < 0.0001 70 -0.261 0.031 -8.394 < 0.0001 71 0.025 0.029 0.849 0.396 72 -0.063 0.030 -2.143 0.032 73 -0.033 0.299 -1.133 0.257
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
56 0.001 0.029 0.021 0.983 57 -0.064 0.030 -2.177 0.029 58 -0.008 0.029 -0.283 0.777 59 -0.043 0.029 -1.475 0.140 60 -0.103 0.030 -3.440 0.001 61 0.161 0.028 5.716 <0.0001 62 -0.056 0.030 -1.881 0.060 63 0.023 0.029 0.796 0.426 64 0.015 0.029 0.508 0.611 65 -0.054 0.030 -1.813 0.070 66 -0.159 0.030 -5.242 <0.0001 67 0.013 0.029 0.448 0.654 68 -0.041 0.029 -1.403 0.161 69 -0.110 0.030 -3.677 <0.0001 70 -0.261 0.031 -8.394 <0.0001 71 0.025 0.029 0.849 0.396 72 -0.063 0.030 -2.143 0.032 73 -0.033 0.029 -1.133 0.257
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
67 0.013 0.029 0.448 0.654 68 -0.041 0.029 -1.403 0.161 69 -0.110 0.030 -3.677 < 0.0001
68 -0.041 0.029 -1.403 0.161 69 -0.110 0.030 -3.677 < 0.0001
69 -0.110 0.030 -3.677 < 0.0001
70 -0.261 0.031 -8.394 < 0.0001
71 0.025 0.029 0.849 0.396 72 -0.063 0.030 -2.143 0.032 73 -0.033 0.029 -1.133 0.257
72 -0.063 0.030 -2.143 0.032 73 -0.033 0.029 -1.133 0.257
73 -0.033 0.029 -1.133 0.257
74 0.056 0.029 1.959 0.050
75 -0.171 0.030 -5.617 < 0.0001
76 -0.011 0.029 -0.368 0.713
77 -0.036 0.029 -1.207 0.227
79 -0.064 0.030 -2.167 0.030
80 -0.074 0.030 -2.486 0.013
81 -0.048 0.030 -1.626 0.104
82 0.051 0.029 1.766 0.077
83 -0.106 0.030 -3.543 < 0.0001
84 0.195 0.028 6.945 < 0.0001
85 -0.091 0.030 -3.042 0.002
86 0.063 0.029 2.197 0.028
87 0.069 0.029 2.397 0.020
88 -0.111 0.030 -3.703 < 0.001
89 0.043 0.029 1.488 0.137
90 -0.005 0.029 -0.159 0.873
91 0.020 0.029 0.679 0.497
92 -0.008 0.029 -0.269 0.788
93 0.070 0.029 2.440 0.015
94 -0.061 0.030 -2.054 0.040
95 0.019 0.029 0.652 0.514
96 -0.025 0.029 -0.863 0.388
97 -0.100 0.030 -3.357 0.001
98 0.045 0.029 1.550 0.121
99 -0.143 0.030 -4.730 < 0.001
100 -0.096 0.030 -3.218 0.001

Fig. S3. Absolute pairwise differences in predicted number of Hawaiian petrel nest sites within 10×10-m grid cells on Haleakalā, east Maui. Predictions were derived from Random Forest models for four models with different combinations of variables associated with topography, substrate, climate, and vegetation. The purpose of the comparisons was to evaluate the relative influence of elevation, rain, wind and vegetation on predicted number of nests sites, therefore different combinations of those four variables were omitted from each pairwise comparison (see Table 2 for variables included in each of the model groups). (a) Model 1 vs. Model 4; (b) Model 2 vs. Model 4; (c) Model 3 vs. Model 4; (d) Model 1 vs. Model 3; (f) Model 2 vs. Model 3.

Fig. S4. Empirical cumulative distribution functions (ECDFs) of the percent differences in predicted number of Hawaiian petrel nest sites within 10×10-m grid cells on Haleakalā, east Maui. Note that x-axis scales differ and range from 0–8% (e) to 0–200% (a). Predictions were derived from Random Forest models for four model groups with different combinations of variables associated with topography, substrate, climate, and vegetation. The purpose of the comparisons was to evaluate the relative influence of elevation, rain, wind, and vegetation on the predicted number of nests sites, therefore different combinations of those four variable types (see Table 3) were omitted from each pairwise comparison. (a) Model 1 vs. Model 4; (b) Model 2 vs. Model 4; (c) Model 3 vs. Model 4; (d) Model 1 vs. Model 2; (e) Model 1 vs. Model 3; (f) Model 2 vs. Model 3.