Extended D-loop	CEFL	SEFL	DRT	EBCMX	CUB	CR	CI	AV	SUR	FG	RA	FN	TRI	ASC	GB	STP
CM-A1.1	315	23	0	1	7		1									
CM-A1.2	19	12	8	1	12		2									
CM-A1.4	1				1											
CM-A1.5					1											
CM-A1.6					2											
CM-A2.1	8	4														
CM-A3.1	171	115	39	147	73	343	37	5	1							
CM-A3.2					2	2										
CM-A3.5						2										
CM-A3.6						3										
CM-A3.8					4											
CM-A3.9					7											
CM-A5.1	2		17			33	4	48	55	16						
CM-A5.2					1			14								
CM-A6.1									2					7		9
CM-A8.1	1									1	27	14	55	212	287	52
CM-A8.3											1		12	3	1	
CM-A9.1											2		19	10		
CM-A10.1											2			9		
CM-A11.1													1			
CM-A12.1											3					
CM-A13.1	10	2			11		2									
CM-A13.2					1											
CM-A16.1	3	1			1		1									
CM-A17.1		2			2		2									
CM-A18.1			1	21	1											
CM-A18.2	1	1		3	4		1									

Table S1. Distribution of extended D-loop (738 bp) haplotype frequencies in Atlantic green turtle (*Chelonia mydas*) nesting populations, including novel data for three sites, showed in bold. For rookery abbreviations see Table 3 in the manuscript or Table S9.

Extended D-loop	CEFL	SEFL	DRT	EBCMX	CUB	CR	CI	AV	SUR	FG	RA	FN	TRI	ASC	GB	STP
CM-A20.1						2										
CM-A21.1						3										
CM-A22.1							2			1						
CM-A23.1													6			
CM-A24.1													1	6		
CM-A25.1											1	2				
CM-A26.1			1													
CM-A27.1					17		3									
CM-A27.2					1											
CM-A28.1	3	2	1		7											
CM-A32.1											1		5	2		
CM-A34.1							1									
CM-A36.1																20
CM-A37.1																2
CM-A39.1														6		
CM-A40.1																11
CM-A42.1														4	1	
CM-A45.1														7		
CM-A48.2					12											
CM-48.3					19											
CM-A53.1		3														
CM-A56.1					2											
CM-A57.1					1											
CM-A69.1														1		
CM-A75.1																2
CM-A78.1							1									
sample size	534	165	67	173	189	388	57	67	58	18	37	16	99	267	289	96

Table S2. Distribution of combined D-loop (738 bp) and mitochondrial short tandem repeat (mtSTR, ~200 bp) haplotype frequencies in 12 Atlantic green turtle (*Chelonia mydas*) nesting populations, including novel data for three sites, showed in bold. For rookery abbreviations see Table 3 in the manuscript or Table S9.

D-loop	mtSTR	CEFL	SEFL	DRT	CI	CR	FG	TRI	RA	FN	ASC	GB	STP
CM-A1.1	5-8-4-4	1	0	0	0	0	0	0	0	0	0	0	0
CM-A1.1	6-7-4-4	41	3	0	0	0	0	0	0	0	0	0	0
CM-A1.1	6-8-4-4	265	18	0	0	0	0	0	0	0	0	0	0
CM-A1.1	7-7-4-4	7	2	0	1	0	0	0	0	0	0	0	0
CM-A1.1	8-7-4-4	1	0	0	0	0	0	0	0	0	0	0	0
CM-A1.2	6-8-4-4	0	1	8	1	0	0	0	0	0	0	0	0
CM-A1.2	7-7-4-4	19	2	0	0	0	0	0	0	0	0	0	0
CM-A1.2	7-8-4-4	0	8	0	0	0	0	0	0	0	0	0	0
CM-A1.2	8-10-4-4	0	1	0	1	0	0	0	0	0	0	0	0
CM-A1.3	7-7-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A1.4	7-8-4-4	1	0	0	0	0	0	0	0	0	0	0	0
CM-A2.1	7-7-4-4	8	4	0	0	0	0	0	0	0	0	0	0
CM-A3.1	5-8-4-4	8	12	1	0	6	0	0	0	0	0	0	0
CM-A3.1	5-9-4-4	15	19	1	2	6	0	0	0	0	0	0	0
CM-A3.1	5-9-5-4	0	0	0	0	1	0	0	0	0	0	0	0
CM-A3.1	6-7-4-4	2	0	0	0	5	0	0	0	0	0	0	0
CM-A3.1	6-7-4-5	0	0	0	0	0	0	0	0	0	0	0	0
CM-A3.1	6-8-4-4	67	9	0	19	262	0	0	0	0	0	0	0
CM-A3.1	6-8-4-5	6	3	0	0	0	0	0	0	0	0	0	0
CM-A3.1	6-8-5-4	0	1	0	0	2	0	0	0	0	0	0	0
CM-A3.1	6-9-4-4	2	0	0	0	8	0	0	0	0	0	0	0
CM-A3.1	6-13-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A3.1	7-7-4-4	9	1	36	1	8	0	0	0	0	0	0	0
CM-A3.1	7-7-4-5	36	52	0	0	1	0	0	0	0	0	0	0
CM-A3.1	7-8-4-4	16	4	1	13	42	0	0	0	0	0	0	0
CM-A3.1	7-8-4-5	9	14	0	0	0	0	0	0	0	0	0	0
CM-A3.1	7-8-4-6	0	0	0	2	0	0	0	0	0	0	0	0
CM-A3.1	7-8-5-4	0	0	0	0	1	0	0	0	0	0	0	0
CM-A3.1	7-9-4-5	1	0	0	0	0	0	0	0	0	0	0	0
CM-A3.1	7-10-4-4	0	0	0	0	1	0	0	0	0	0	0	0
CM-A3.1	7-12-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A3.4	7-8-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A3.5	6-8-4-4	0	0	0	0	1	0	0	0	0	0	0	0
CM-A3.5	7-8-4-4	0	0	0	0	1	0	0	0	0	0	0	0
CM-A3.6	6-8-4-4	0	0	0	0	3	0	0	0	0	0	0	0
CM-A5.1	5-13-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A5.1	6-8-4-4	1	0	0	0	0	0	0	0	0	0	0	0
CM-A5.1	6-12-4-4	0	0	0	1	12	2	0	0	0	0	0	0
CM-A5.1	6-13-3-5	0	0	0	0	0	0	0	0	0	0	0	0
CM-A5.1	6-13-4-4	0	0	0	1	17	2	0	0	0	0	0	0
CM-A5.1	6-14-4-4	0	0	0	0	1	0	0	0	0	0	0	0
CM-A5.1	7-11-4-4	0	0	17	0	0	0	0	0	0	0	0	0

D-loop	mtSTR	CEFL	SEFL	DRT	CI	CR	FG	TRI	RA	FN	ASC	GB	STP
CM-A5.1	7-12-4-4	0	0	0	2	1	6	0	0	0	0	0	0
CM-A5.1	7-13-4-4	0	0	0	0	0	1	0	0	0	0	0	0
CM-A5.1	7-15-0-4	0	0	0	0	1	0	0	0	0	0	0	0
CM-A5.1	7-17-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A5.1	8-10-4-4	1	0	0	0	0	0	0	0	0	0	0	0
CM-A5.1	8-11-4-4	0	0	0	0	1	0	0	0	0	0	0	0
CM-A5.3	7-12-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A6.1	5-13-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A6.1	6-8-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A6.1	6-12-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A6.1	6-13-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A6.1	6-16-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A6.1	7-7-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A6.1	7-11-4-4	0	0	0	0	0	0	0	0	0	0	0	1
CM-A6.1	7-11-5-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A6.1	7-12-4-4	0	0	0	0	0	0	0	0	0	5	0	6
CM-A6.1	7-14-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A6.1	7-16-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	5-13-4-4	0	0	0	0	0	0	0	0	0	0	0	1
CM-A8.1	5-14-4-4	0	0	0	0	0	0	0	0	0	0	0	1
CM-A8.1	6-8-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	6-12-4-4	0	0	0	0	0	0	2	0	0	5	0	0
CM-A8.1	6-13-4-4	0	0	0	0	0	0	6	0	0	9	0	0
CM-A8.1	6-14-4-4	0	0	0	0	0	0	0	0	0	3	0	0
CM-A8.1	6-15-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	6-16-4-4	0	0	0	0	0	0	0	1	0	0	0	0
CM-A8.1	6-17-4-4	0	0	0	0	0	0	0	0	0	3	0	0
CM-A8.1	7-7-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	7-8-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	7-11-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	7-11-4-4	0	0	0	0	0	0	9	5	1	13	5	1
CM-A8.1	7-11-4-5	0	0	0	0	0	0	0	0	2	0	1	0
CM-A8.1	7-11-5-4	0	0	0	0	0	0	0	0	0	0	0	1
CM-A8.1	7-12-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	7-12-4-2	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	7-12-4-4	1	0	0	0	0	0	22	12	2	85	276	27
CM-A8.1	7-12-4-5	0	0	0	0	0	0	0	0	2	0	0	0
CM-A8.1	7-12-5-4	0	0	0	0	0	0	0	0	1	0	0	0
CM-A8.1	7-13-4-4	0	0	0	0	0	0	1	3	0	14	4	0
CM-A8.1	7-14-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	7-14-4-4	0	0	0	0	0	0	1	1	0	1	0	0
CM-A8.1	7-15-4-4	0	0	0	0	0	0	1	1	1	2	0	0

D-loop	mtSTR	CEFL	SEFL	DRT	CI	CR	FG	TRI	RA	FN	ASC	GB	STP
CM-A8.1	7-16-3-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	7-16-3-5	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	7-16-4-4	0	0	0	0	0	1	5	1	2	6	0	6
CM-A8.1	7-17-4-4	0	0	0	0	0	0	3	0	0	0	0	0
CM-A8.1	8-9-4-4	0	0	0	0	0	0	1	0	0	0	0	0
CM-A8.1	8-10-4-4	0	0	0	0	0	0	3	0	0	1	0	0
CM-A8.1	8-11-4-4	0	0	0	0	0	0	0	0	0	7	0	0
CM-A8.1	8-12-4-4	0	0	0	0	0	0	0	0	1	5	0	0
CM-A8.1	8-13-4-4	0	0	0	0	0	0	0	2	0	1	0	0
CM-A8.1	8-14-3-3	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.1	8-14-4-4	0	0	0	0	0	0	0	1	0	5	0	0
CM-A8.1	8-15-4-4	0	0	0	0	0	0	1	0	0	1	0	0
CM-A8.1	8-16-4-4	0	0	0	0	0	0	0	0	2	0	0	0
CM-A8.1	9-14-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.2	7-11-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.2	7-12-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A8.3	7-11-4-4	0	0	0	0	0	0	3	1	0	2	0	0
CM-A8.3	7-11-5-4	0	0	0	0	0	0	1	0	0	0	0	0
CM-A8.3	7-12-4-4	0	0	0	0	0	0	7	0	0	1	1	0
CM-A8.3	7-16-4-4	0	0	0	0	0	0	1	0	0	0	0	0
CM-A9.1	6-12-4-4	0	0	0	0	0	0	3	0	0	0	0	0
CM-A9.1	6-13-4-4	0	0	0	0	0	0	1	0	0	0	0	0
CM-A9.1	7-11-4-4	0	0	0	0	0	0	3	0	0	3	0	0
CM-A9.1	7-12-4-4	0	0	0	0	0	0	11	1	0	5	0	0
CM-A9.1	7-13-4-4	0	0	0	0	0	0	1	0	0	0	0	0
CM-A9.1	8-11-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A9.1	8-12-4-4	0	0	0	0	0	0	0	1	0	0	0	0
CM-A10.1	6-13-4-5	0	0	0	0	0	0	0	0	0	0	0	0
CM-A10.1	7-12-4-4	0	0	0	0	0	0	0	2	0	2	0	0
CM-A10.1	7-13-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A10.1	7-17-4-4	0	0	0	0	0	0	0	0	0	1	0	0
CM-A10.1	8-11-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A10.1	8-12-4-4	0	0	0	0	0	0	0	0	0	1	0	0
CM-A11.1	7-17-4-4	0	0	0	0	0	0	1	0	0	0	0	0
CM-A12.1	7-12-4-4	0	0	0	0	0	0	0	3	0	0	0	0
CM-A13.1	5-7-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	5-7-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	5-7-7-4	0	2	0	2	0	0	0	0	0	0	0	0
CM-A13.1	5-8-5-5	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	5-8-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	5-9-5-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	5-10-6-4	0	1	0	0	0	0	0	0	0	0	0	0

D-loop	mtSTR	CEFL	SEFL	DRT	CI	CR	FG	TRI	RA	FN	ASC	GB	STP
CM-A13.1	6-7-5-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	6-7-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	6-8-5-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	6-8-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	6-8-7-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	6-8-8-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	6-8-9-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	6-9-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	6-9-7-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	6-9-8-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	6-10-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	6-11-5-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	7-7-7-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	7-8-5-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	7-8-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	7-8-7-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	7-8-8-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	7-9-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	7-10-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	7-11-5-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	7-11-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	8-6-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	8-7-7-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A13.1	8-9-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A14.1	7-8-7-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A14.1	7-8-8-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A16.1	5-7-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A16.1	5-8-6-4	1	0	0	0	0	0	0	0	0	0	0	0
CM-A16.1	5-10-6-4	1	0	0	0	0	0	0	0	0	0	0	0
CM-A16.1	5-12-6-4	1	0	0	0	0	0	0	0	0	0	0	0
CM-A16.1	5-11-6-5	0	0	0	1	0	0	0	0	0	0	0	0
CM-A16.2	5-8-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A17.1	5-8-5-4	0	1	0	0	0	0	0	0	0	0	0	0
CM-A17.1	7-10-7-4	0	1	0	2	0	0	0	0	0	0	0	0
CM-A18.1	7-7-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A18.2	7-6-5-4	0	0	0	1	0	0	0	0	0	0	0	0
CM-A18.2	7-7-4-4	1	1	1	0	0	0	0	0	0	0	0	0
CM-A20.1	7-13-4-4	0	0	0	0	2	0	0	0	0	0	0	0
CM-A21.1	6-13-4-4	0	0	0	0	3	0	0	0	0	0	0	0
CM-A21.1	7-11-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A22.1	5-8-4-5	0	0	0	2	0	0	0	0	0	0	0	0
CM-A22.1	5-8-4-6	0	0	0	0	0	1	0	0	0	0	0	0

D-loop	mtSTR	CEFL	SEFL	DRT	CI	CR	FG	TRI	RA	FN	ASC	GB	STP
CM-A22.1	7-7-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A23.1	7-12-4-4	0	0	0	0	0	0	6	0	0	0	0	0
CM-A24.1	7-12-4-4	0	0	0	0	0	0	0	0	0	6	0	0
CM-A24.1	7-13-4-4	0	0	0	0	0	0	1	0	0	0	0	0
CM-A25.1	7-12-4-4	0	0	0	0	0	0	0	1	2	0	0	0
CM-A26.1	6-8-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A26.1	7-8-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A26.1	7-9-4-4	0	0	1	0	0	0	0	0	0	0	0	0
CM-A27.1	5-8-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A27.1	5-9-4-4	0	0	0	3	0	0	0	0	0	0	0	0
CM-A27.1	5-9-8-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A28.1	5-8-5-4	2	2	1	0	0	0	0	0	0	0	0	0
CM-A28.1	6-8-4-4	1	0	0	0	0	0	0	0	0	0	0	0
CM-A30.1	7-8-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A32.1	6-12-4-4	0	0	0	0	0	0	1	0	0	0	0	0
CM-A32.1	6-13-4-4	0	0	0	0	0	0	0	1	0	0	0	0
CM-A32.1	7-10-4-4	0	0	0	0	0	0	1	0	0	0	0	0
CM-A32.1	7-11-4-4	0	0	0	0	0	0	2	0	0	0	0	0
CM-A32.1	7-12-4-4	0	0	0	0	0	0	1	0	0	1	0	0
CM-A32.1	8-12-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A34.1	7-7+6-6-4*	0	0	0	1	0	0	0	0	0	0	0	0
CM-A35.1	6-18-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A35.1	7-16-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A35.1	7-17-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A36.1	7-11-4-4	0	0	0	0	0	0	0	0	0	0	0	6
CM-A36.1	7-12-4-4	0	0	0	0	0	0	0	0	0	0	0	11
CM-A36.1	7-13-4-4	0	0	0	0	0	0	0	0	0	0	0	1
CM-A37.1	7-11-5-4	0	0	0	0	0	0	0	0	0	0	0	2
CM-A39.1	7-12-4-4	0	0	0	0	0	0	0	0	0	2	0	0
CM-A39.1	8-12-4-4	0	0	0	0	0	0	0	0	0	3	0	0
CM-A40.1	7-12-4-4	0	0	0	0	0	0	0	0	0	0	0	1
CM-A40.1	7-13-4-4	0	0	0	0	0	0	0	0	0	0	0	1
CM-A40.1	7-14-4-4	0	0	0	0	0	0	0	0	0	0	0	1
CM-A40.1	7-14-4-5	0	0	0	0	0	0	0	0	0	0	0	1
CM-A40.1	7-15-4-4	0	0	0	0	0	0	0	0	0	0	0	4
CM-A40.1	8-15-4-4	0	0	0	0	0	0	0	0	0	0	0	1
CM-A42.1	6-17-4-4	0	0	0	0	0	0	0	0	0	1	0	0
CM-A42.1	7-12-4-4	0	0	0	0	0	0	0	0	0	2	1	0
CM-A42.1	8-12-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A44.1	8-13-4-2	0	0	0	0	0	0	0	0	0	0	0	0
CM-A45.1	5-12-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A45.1	5-13-4-4	0	0	0	0	0	0	0	0	0	1	0	0

D-loop	mtSTR	CEFL	SEFL	DRT	CI	CR	FG	TRI	RA	FN	ASC	GB	STP
CM-A45.1	5-14-4-4	0	0	0	0	0	0	0	0	0	1	0	0
CM-A45.1	5-15-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A46.1	7-12-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A47.1	7-7-5-5	0	0	0	0	0	0	0	0	0	0	0	0
CM-A48.3	6-7-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A53.1	5-8-4-4	1	0	0	0	0	0	0	0	0	0	0	0
CM-A53.1	6-8-4-4	2	0	0	0	0	0	0	0	0	0	0	0
CM-A60.1	6-8-8-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A62.1	6-8-8-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A68.1	5-6-6-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A69.1	7-12-4-4	0	0	0	0	0	0	0	0	0	1	0	0
CM-A75.1	6-12-4-4	0	0	0	0	0	0	0	0	0	0	0	1
CM-A75.1	7-13-4-4	0	0	0	0	0	0	0	0	0	0	0	0
CM-A78.1	8-7-4-4	0	0	0	1	0	0	0	0	0	0	0	0
sample size	9	527	162	67	57	386	13	99	37	16	199	288	74

*This sample presents a (T) insertion in STR 2 that divides this STR in two fragments (see Barbanti et al. 2019)

mtSTR	CEFL	SEFL	DRT	CI	CR	FG	RA	FN	TRI	ASC	GB	STP
5.7.7.4		2		2								
5911	10	∠ 10	1	2	6							
5-8-4-5	10	12	I	2	0							
5846				2		1						
50-4-0 5051	2	2	1			I						
5961	2 1	3	I									
5-0-0-4	15	10	1	F	e							
5-9-4-4	15	19	I	5	0							
5-9-5-4	4	4			I							
5-10-6-4	I	I		4								
5-11-0-5	1			I								
5-12-0-4	I									4		4
5-13-4-4										1		1
5-14-4-4	40	2			F					I		I
6-7-4-4	43	3	0	00	C C							
6-8-4-4	330	28	8	20	266							
6-8-4-5	6	3			0							
6-8-5-4	0	1			2							
6-9-4-4	2			4	8	0			0	0		4
6-12-4-4				Ĩ	12	2			6	6		.I
0-13-3-3				4	20	1	4		7	0		
6-13-4-4				I	20	3	I		1	9		
6 16 4 4					I		4			3		
6 17 4 4							I			4		
0-17-4-4				4						4		
7-6-5-4	4.4	10	07	1	0							
7-7-4-4	44	10	37	2	8							
7-7-4-5	30	52	4	10	1							
7-8-4-4	17	14	I	13	43							
7-0-4-5	9	14		2								
7-0-4-0 7 0 5 1				2	1							
7-0-5-4			1		I							
7-9-4-4	1		I									
7-9-4-5	I				1				1			
7-10-4-4		1		2	I				I			
7 11 / /		I	17	Z			6	1	17	10	5	Q
7-11-4-4			17				0	2	17	10	1	0
7-11-4-3								2	1			З
7-12-4-4	1			2	1	7	19	4	47	112	278	45
7-12-4-5				2	•	'	15	2	77	112	210	-10
7-12-5-4								1				
7-13-4-4					2	1	3		3	14	4	2
7-14-4-4					-	•	1		1	1	•	1
7-14-4-5							•		•			1
7-15-0-4					1							•
7-15-4-4					·		1	1	1	2		4
7-16-4-4						2	1	2	6	6		6
7-17-4-4						—	-	—	4	1		-
7-7+6-6-4*				1								
8-7-4-4	1			1								
8-9-4-4									1			
8-10-4-4	1	1		1					3	1		

Table S3. Distribution of all mtSTR (mitochondrial short tandem repeat) haplotype frequencies in 12 Atlantic green turtle (*Chelonia mydas*) nesting populations, including novel data for three sites, showed in bold. For rookery abbreviations see Table 3 in the manuscript or Table S9.

mtSTR code	CEFL	SEFL	DRT	CI	CR	FG	RA	FN	TRI	ASC	GB	STP
8-11-4-4					1					7		
8-12-4-4							1	1		9		
8-13-4-4							2			1		
8-14-4-4							1			5		
8-15-4-4									1	1		1
8-16-4-4								2				
Sample size	527	162	67	57	386	17	37	16	99	202	288	74

*This sample presents a (T) insertion in STR 2 that divides this STR in two fragments (see Barbanti et al. 2019)

Table S4. Pairwise exact test P-values (above diagonal) and respective pairwise F_{ST} values (using only haplotype frequency, below diagonal) among 30 Atlantic green turtle (*Chelonia mydas*) foraging aggregations, based on 486 bp sequences of the D-loop in the control region of the mtDNA. The study site is in bold, and abbreviations follow those in Table 2 in the manuscript. Non-significant values, after false discovery rate (FDR) correction, are marked in bold (for a p < 0.05, FDR = 0.0075; Narum, 2006).

Foraging grounds	NC	EcFL	SFL	BB	SJB	SRI	LA	ТΧ	BHM	PR	COL	MT	BRB	ALF	RA	FN	ALG	BA	ES	SFI	UB	PAR	Al	СВ	URU	BuA	ST	CV	CAN	MAU
NC		0.001	0.342	0.450	0.263	0.146	0.000	0.000	0.000	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
EcFL	0.065		0.009	0.002	0.003	0.001	0.000	0.000	0.199	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SFL	0.000	0.039		0.368	0.826	0.022	0.000	0.000	0.001	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BB	-0.001	0.055	0.000		0.444	0.148	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SJB	0.002	0.041	-0.003	-0.001		0.021	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SRI	0.011	0.143	0.031	0.010	0.028		0.122	0.031	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LA	0.083	0.261	0.116	0.085	0.111	0.014		0.757	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ТХ	0.108	0.285	0.144	0.109	0.137	0.028	-0.003		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BHM	0.045	0.004	0.022	0.042	0.028	0.113	0.218	0.245		0.051	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PR	0.038	0.036	0.023	0.046	0.031	0.109	0.216	0.248	0.009		0.105	0.000	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
COL	0.080	0.134	0.076	0.105	0.087	0.161	0.264	0.294	0.075	0.015		0.019	0.429	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.000
MT	0.199	0.341	0.212	0.237	0.224	0.264	0.329	0.349	0.256	0.162	0.058		0.003	0.000	0.000	0.043	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.173	0.164	0.000
BRB	0.055	0.131	0.066	0.089	0.074	0.127	0.219	0.252	0.081	0.029	-0.002	0.075		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000
ALF	0.193	0.305	0.218	0.242	0.224	0.271	0.338	0.367	0.252	0.176	0.095	0.088	0.054		0.398	0.004	0.000	0.132	0.016	0.000	0.000	0.000	0.009	0.007	0.000	0.005	0.001	0.005	0.212	0.000
RA	0.230	0.359	0.258	0.280	0.263	0.304	0.363	0.388	0.299	0.222	0.134	0.097	0.088	-0.001		0.010	0.000	0.584	0.224	0.001	0.000	0.001	0.074	0.050	0.000	0.049	0.002	0.011	0.275	0.000
FN	0.262	0.393	0.284	0.307	0.290	0.333	0.383	0.403	0.323	0.237	0.126	0.030	0.110	0.035	0.030		0.000	0.109	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.726	0.931	0.000
ALG	0.382	0.532	0.411	0.423	0.398	0.476	0.498	0.495	0.429	0.397	0.336	0.301	0.253	0.078	0.060	0.152		0.007	0.002	0.387	0.825	0.510	0.063	0.102	0.188	0.165	0.023	0.000	0.004	0.000
BA	0.271	0.431	0.300	0.324	0.305	0.350	0.406	0.424	0.349	0.268	0.169	0.098	0.124	0.012	-0.006	0.016	0.059		0.824	0.035	0.003	0.020	0.294	0.197	0.000	0.196	0.008	0.077	0.434	0.000
ES	0.302	0.436	0.331	0.349	0.330	0.379	0.420	0.435	0.364	0.296	0.203	0.133	0.151	0.020	0.003	0.034	0.040	-0.010		0.015	0.001	0.004	0.259	0.156	0.000	0.207	0.004	0.010	0.279	0.000
SFI	0.364	0.503	0.394	0.407	0.384	0.449	0.475	0.477	0.413	0.373	0.299	0.250	0.225	0.057	0.040	0.112	-0.001	0.031	0.019		0.198	0.965	0.334	0.409	0.006	0.624	0.019	0.000	0.018	0.000
UB	0.376	0.529	0.405	0.418	0.392	0.472	0.495	0.493	0.425	0.393	0.336	0.310	0.249	0.081	0.066	0.162	-0.005	0.070	0.050	0.003		0.230	0.043	0.068	0.386	0.095	0.025	0.000	0.004	0.000
PAR	0.371	0.499	0.401	0.413	0.390	0.450	0.477	0.479	0.416	0.378	0.305	0.259	0.231	0.061	0.043	0.121	-0.002	0.036	0.023	-0.004	0.002		0.230	0.299	0.005	0.491	0.018	0.000	0.014	0.000
Al	0.307	0.450	0.338	0.356	0.335	0.387	0.428	0.442	0.374	0.313	0.230	0.181	0.166	0.027	0.011	0.069	0.012	0.002	0.002	0.000	0.017	0.002		0.987	0.001	0.965	0.021	0.001	0.084	0.000
СВ	0.307	0.453	0.338	0.356	0.336	0.387	0.429	0.443	0.378	0.316	0.236	0.190	0.170	0.031	0.016	0.076	0.009	0.007	0.005	-0.001	0.013	0.001	-0.008		0.001	0.940	0.050	0.000	0.057	0.000
URU	0.436	0.580	0.463	0.470	0.441	0.531	0.541	0.526	0.464	0.457	0.413	0.388	0.320	0.129	0.111	0.223	0.003	0.120	0.087	0.021	-0.001	0.017	0.045	0.039		0.004	0.006	0.000	0.000	0.000
BuA	0.322	0.472	0.352	0.370	0.349	0.406	0.445	0.455	0.388	0.330	0.249	0.199	0.182	0.035	0.016	0.079	0.006	0.008	0.004	-0.004	0.011	-0.002	-0.008	-0.008	0.037		0.024	0.000	0.058	0.000
ST	0.317	0.485	0.350	0.368	0.347	0.403	0.448	0.459	0.397	0.342	0.280	0.268	0.201	0.074	0.066	0.153	0.036	0.073	0.066	0.039	0.034	0.036	0.037	0.026	0.049	0.037		0.000	0.005	0.000
CV	0.278	0.433	0.298	0.323	0.304	0.359	0.413	0.427	0.337	0.248	0.130	0.015	0.122	0.054	0.050	-0.009	0.203	0.033	0.054	0.151	0.217	0.160	0.100	0.110	0.289	0.113	0.202		0.864	0.000
CAN	0.268	0.442	0.293	0.320	0.300	0.359	0.422	0.437	0.336	0.243	0.123	0.028	0.101	0.013	0.008	-0.027	0.135	-0.009	0.004	0.084	0.149	0.092	0.041	0.050	0.222	0.052	0.144	-0.032		0.000
MAU	0.610	0.757	0.620	0.614	0.569	0.728	0.694	0.632	0.560	0.633	0.639	0.627	0.538	0.292	0.281	0.407	0.076	0.335	0.223	0.107	0.071	0.092	0.173	0.167	0.036	0.166	0.192	0.530	0.495	

Table S5. Pairwise exact test P-values (above diagonal) and respective pairwise ϕ_{ST} values (below diagonal) among 30 Atlantic green turtle (*Chelonia mydas*) foraging aggregations, based on 486 bp sequences of the D-loop in the control region of the mtDNA. The study site is in bold, and abbreviations follow those in Table 2 in the manuscript. Non-significant values, after false discovery rate (FDR) correction, are marked in bold (for a p < 0.05, FDR = 0.0075; Narum, 2006).

grounds	NC	EcFL	SFL	BB	SJB	SRI	LA	ТΧ	BHM	PR	COL	MT	BRB	ALF	RA	FN	ALG	BA	ES	SFI	UB	PAR	AI	СВ	URU	BuA	ST	CV	CAN	MAU
NC		0.019	0.328	0.050	0.030	0.115	0.000	0.000	0.100	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
EcFL	0.035		0.038	0.015	0.007	0.006	0.000	0.000	0.049	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SFL	0.001	0.020		0.416	0.507	0.280	0.000	0.000	0.025	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BB	0.013	0.027	-0.001		0.781	0.697	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SJB	0.012	0.028	-0.001	-0.003		0.555	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SRI	0.015	0.056	0.003	-0.007	-0.003		0.163	0.104	0.014	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LA	0.058	0.146	0.048	0.036	0.039	0.008		0.886	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ТХ	0.073	0.160	0.060	0.045	0.047	0.011	-0.003		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BHM	0.007	0.018	0.012	0.027	0.028	0.039	0.084	0.101		0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PR	0.043	0.100	0.073	0.115	0.116	0.107	0.178	0.231	0.035		0.019	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
COL	0.219	0.317	0.276	0.360	0.357	0.309	0.435	0.512	0.221	0.060		0.005	0.634	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
MI	0.541	0.643	0.587	0.664	0.653	0.632	0.724	0.764	0.532	0.347	0.132		0.003	0.050	0.006	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.078	0.226	0.000
BRB	0.227	0.324	0.286	0.364	0.364	0.311	0.422	0.505	0.241	0.079	-0.012	0.128	0.405	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
	0.552	0.632	0.595	0.653	0.649	0.624	0.689	0.742	0.550	0.395	0.198	0.032	0.165	0.005	0.192	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.006	0.162	0.000
	0.643	0.731	0.676	0.730	0.717	0.729	0.776	0.802	0.610	0.486	0.299	0.067	0.258	0.005	0.020	0.010	0.000	0.070	0.009	0.001	0.001	0.000	0.011	0.003	0.000	0.010	0.002	0.016	0.298	0.000
	0.009	0.768	0.710	0.703	0.751	0.768	0.805	0.825	0.649	0.543	0.300	0.000	0.333	0.054	0.030	0 106	0.000	0.109	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.095	0.993	0.000
ALG BA	0.700	0.009	0.704	0.023	0.799	0.007	0.074	0.002	0.004	0.034	0.200	0.207	0.449	0.060	0.047	0.100	0.042	0.017	0.003	0.073	0.021	0.077	0.307	0.010	0.001	0.310	0.010	0.000	0.003	0.001
ES	0.722	0.000	0.740	0.002	0.700	0.044	0.000	0.000	0.000	0.550	0.330	0.134	0.340	0.000	0.022	0.013	0.045	-0.011	0.331	0.003	0.004	0.000	0.231	0.113	0.000	0.220	0.001	0.000	0.204	0.000
SEL	0.754	0.846	0.785	0.819	0.798	0.850	0.861	0.856	0.689	0.646	0.523	0.170	0.462	0.073	0.020	0.024	-0.002	0.019	0.018	0.010	0.000	0.000	0.113	0.000	0.000	0.120	0.000	0.000	0.012	0.000
UB	0.749	0.846	0.768	0.811	0.787	0.854	0.865	0.855	0.671	0.608	0.020	0.252	0.413	0.075	0.000	0.119	-0.002	0.065	0.054	0 006	0.120	0.020	0.073	0.123	0.314	0.066	0.016	0.000	0.003	0.000
PAR	0.786	0.852	0.801	0.828	0.810	0.855	0.862	0.858	0.705	0.680	0.562	0.278	0.504	0.101	0.049	0.095	-0.003	0.025	0.024	-0.003	0.007	0.001	0.618	0.793	0.002	0.764	0.004	0.000	0.006	0.000
AI	0.744	0.835	0.764	0.807	0.786	0.841	0.857	0.854	0.675	0.605	0.467	0.203	0.409	0.069	0.028	0.060	0.001	0.004	0.007	-0.005	0.011	-0.002		0.917	0.001	0.982	0.005	0.000	0.036	0.000
СВ	0.741	0.833	0.762	0.806	0.785	0.840	0.857	0.855	0.675	0.599	0.462	0.212	0.404	0.075	0.037	0.073	-0.002	0.015	0.017	-0.005	0.007	-0.004	-0.006		0.006	0.916	0.013	0.000	0.016	0.000
URU	0.799	0.879	0.811	0.842	0.817	0.886	0.887	0.871	0.701	0.682	0.587	0.363	0.515	0.126	0.091	0.183	0.009	0.119	0.095	0.024	0.001	0.020	0.035	0.024		0.002	0.007	0.000	0.000	0.097
BuA	0.744	0.841	0.764	0.810	0.787	0.849	0.864	0.858	0.675	0.599	0.461	0.204	0.403	0.071	0.031	0.062	0.000	0.006	0.008	-0.006	0.013	-0.004	-0.008	-0.007	0.036		0.004	0.000	0.031	0.000
ST	0.725	0.841	0.749	0.805	0.781	0.854	0.871	0.861	0.669	0.564	0.417	0.243	0.360	0.093	0.078	0.151	0.044	0.121	0.106	0.051	0.032	0.049	0.056	0.040	0.037	0.061		0.000	0.000	0.002
CV	0.682	0.785	0.712	0.773	0.754	0.789	0.833	0.841	0.642	0.507	0.313	0.040	0.290	0.060	0.048	-0.009	0.189	0.047	0.060	0.147	0.200	0.164	0.116	0.131	0.296	0.120	0.231		0.898	0.000
CAN	0.671	0.795	0.706	0.775	0.754	0.805	0.849	0.847	0.636	0.479	0.263	0.022	0.245	0.025	0.008	-0.033	0.142	0.007	0.013	0.092	0.154	0.106	0.066	0.081	0.254	0.073	0.205	-0.038		0.000
MAU	0.853	0.926	0.858	0.881	0.853	0.935	0.925	0.895	0.730	0.753	0.696	0.503	0.620	0.189	0.158	0.273	0.036	0.240	0.162	0.056	0.021	0.046	0.082	0.064	0.004	0.092	0.075	0.450	0.443	

Table S6. Pairwise exact test P-values (above diagonal) and pairwise F_{ST} values (using only haplotype frequency, below diagonal) among 12 Atlantic green turtle (*Chelonia mydas*) foraging aggregations, based on 738 bp sequences of the D-loop in the control region of the mtDNA (extended D-loop). The study site is in bold, and abbreviations follow those in Table 2 in the manuscript. Non-significant values, false discovery rate (FDR) correction, are marked in bold (for a P < 0.05, FDR = 0.0105; Narum, 2006).

Foragin g ground s	SFL	BB	SJB	SRI	LA	тх	PR	COL	ALG	URU	STP	MAU
SFL		0.52 9	0.76 3	0.00 3	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
BB	0.00 1		0.68 2	0.02 5	0.00 0	0.00 0	0.00	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
SJB	- 0.00 3	- 0.00 2		0.00 5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0
SRI	0.05 1	0.02 9	0.04 6		0.16 7	0.30 8	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
LA	0.12 8	0.10 0	0.12 4	0.00 9		0.75 6	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
ТХ	0.11	0.09	0.11 3	0.00	- 0.00 4		0.00	0.00	0.00	0.00	0.00	0.00
PR	0.04 6	0.06 1	0.05 8	0.12 3	0.19 5	0.19 4	0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
COL	0.08 5	0.09 8	0.08 9	0.17 2	0.25 4	0.24 9	0.07 8		0.00 0	0.00 0	0.00 0	0.00 0
ALG	0.39 4	0.40 1	0.39 6	0.48 1	0.48 7	0.48 6	0.33 5	0.38 5	_	0.83 2	0.02 7	0.00 0
URU	0.37 1	0.38 1	0.37 5	0.45 6	0.46 8	0.47 0	0.31 1	0.35 5	0.00 8		0.05 0	0.00 1
STP	0.32 9	0.34 2	0.33 6	0.40 3	0.43 0	0.43 4	0.26 6	0.30 4	0.03 5	0.02 9		0.00 0
MAU	0.60 5	0.59 4	0.59 0	0.72 9	0.68 3	0.66 7	0.57 5	0.65 6	0.06 2	0.07 4	0.19 2	

Table S7. Pairwise exact test P-values (above diagonal) and pairwise ϕ_{ST} values (below diagonal) among 12 Atlantic green turtle (*Chelonia mydas*) foraging aggregations, based on 738 bp sequences of the D-loop in the control region of the mtDNA (extended D-loop). The study site is in bold, and abbreviations follow those in Table 2 in the manuscript. Non-significant values, false discovery rate (FDR) correction, are marked in bold (for a P < 0.05, FDR = 0.0105; Narum, 2006).

Foragin g ground s	SFL	BB	SJB	SRI	LA	тх	PR	COL	ALG	URU	STP	MAU
SFL		0.43 5	0.32 0	0.22 3	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
BB	- 0.00 1		0.80 4	0.50 2	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
SJB	0.00 1	- 0.00 3		0.53 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
SRI	0.00 5	- 0.00 2	- 0.00 3		0.15 8	0.64 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
LA	0.04 2	0.03 1	0.03 6	0.00 7		0.63 1	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
тх	0.03 4	0.02 3	0.02 5	- 0.00 5	- 0.00 2		0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0
PR	0.08 7	0.12 8	0.14 0	0.12 1	0.18 4	0.19 3		0.01 4	0.00 0	0.00 0	0.00 0	0.00 0
COL	0.29 3	0.37 8	0.38 8	0.33 2	0.45 0	0.47 0	0.06 3		0.00 0	0.00 0	0.00 0	0.00 0
ALG	0.77 8	0.82 1	0.82 5	0.88 9	0.88 3	0.87 8	0.61 0	0.50 4		0.30 5	0.00 1	0.04 0
URU	0.75 2	0.80 4	0.80 7	0.86 8	0.87 1	0.86 7	0.56 5	0.43 8	0.00 2		0.00 3	0.03 5
STP	0.65 6	0.71 9	0.72 2	0.66 1	0.75 3	0.77 1	0.46 7	0.28 5	0.05 1	0.03 3		0.00 0
MAU	0.85 6	0.87 9	0.88 2	0.94 0	0.92 6	0.91 8	0.74 4	0.69 5	0.01 5	0.02 1	0.11 8	

Table S8. Reassessment of the relative contributions of green turtle (*Chelonia mydas*) Atlantic rookeries to a foraging ground in the Banc d'Arguin, Mauritania through 'many-to-one' mixed stock analysis with two markers combined: the extended mitochondrial DNA control region D-loop haplotype (738 bp) and mitochondrial short tandem repeats (mtSTR, ~200 bp), including a novel haplotype combination (extended D-loop + mtSTR) in the main source population of Poilão Island, Guinea-Bissau. This haplotype combination (CM-A5.1 '7-12-4-4') has not yet been directly sampled at Poilão, but was identified in a foraging turtle in the Banc d'Arguin, that was later found nesting at Poilão.

	D-loop + mtSTR							
Rookery location	popula	tion size a	s prior	nc	no priors			
	mean	max	min	mean	max	min		
Poilão Island, Guinea-Bissau	0.881	0.932	0.818	0.875	0.925	0.812		
Cayenne, French Guiana	0.076	0.122	0.038	0.080	0.125	0.044		
Ascension Island, UK	0.035	0.086	0.000	0.023	0.076	0.000		
São Tomé Isl., São Tomé and Príncipe	0.001	0.004	0.000	0.012	0.053	0.000		
Rocas Atoll, Brazil	0.000	0.000	0.000	0.003	0.025	0.000		
Fernando de Noronha, Brazil	0.000	0.000	0.000	0.001	0.007	0.000		
Trindade Island, Brazil	0.000	0.004	0.000	0.004	0.028	0.000		
Central Eastern Florida, USA	0.001	0.010	0.000	0.001	0.009	0.000		
South Eastern Florida, USA	0.000	0.002	0.000	0.000	0.003	0.000		
Dry Tortugas National Park, FL, USA	0.000	0.000	0.000	0.000	0.004	0.000		
Cayman Islands	0.000	0.000	0.000	0.000	0.004	0.000		
Tortuguero, Costa Rica	0.006	0.020	0.000	0.001	0.010	0.000		

Table S9. References for mitochondrial DNA haplotype frequencies for the extended D-loop (738 bp) and mitochondrial short tandem repeat (mtSTR, ~200 bp) at 16 Atlantic green turtle (*Chelonia mydas*) nesting populations.

Region	Rookery location	Short name	References: extended D-loop haplotype frequencies	References: mtSTR haplotype frequencies		
Northwest Atlantic	Central Eastern Florida, USA	CEFL	Shamblin et al. 2020	Shamblin et al. 2020		
	South Eastern Florida, USA	SEFL	Shamblin et al. 2020	Shamblin et al. 2020		
	Dry Tortugas National Park, Florida, USA	DRT	Shamblin et al. 2020	Shamblin et al. 2020		
	Campeche and Yucatán, Mexico	EBCMX	Millán-Aguilar 2009	n.a.		
	Tortuguero, Costa Rica	CR	Shamblin et al. 2023	Shamblin et al. 2023		
Caribbean Sea	Southwest Cuba	CUB	Azanza-Ricardo et al. 2023	n.a.		
	Cayman Islands	CI	Barbanti et al. 2019	Barbanti et al. 2019		
	Aves Island, Venezuela	AV	Shamblin et al. 2012	n.a.		
	Matapica and Galibi, Suriname	SUR	Shamblin et al. 2012	n.a.		
	Cayenne, French Guiana	FG	This study	This study		
	Rocas Atoll, Brazil	RA	Shamblin et al. 2015	Shamblin et al. 2015		
Southwest	Fernando de Noronha, Brazil	FN	Shamblin et al. 2015	Shamblin et al. 2015		
Allantic	Trindade Island, Brazil	TRI	Shamblin et al. 2015	Shamblin et al. 2015		
	Ascension Island, UK	ASC	Ascension Island Government, Conservation and Fisheries Directorate, unpublished data	Ascension Island Government, Conservation and Fisheries Directorate, unpublished data		
Eastern Atlantic	Poilão Island, Guinea-Bissau	GB	Patrício et al. 2017 and this study	Patrício et al. 2017 and this study		
	São Tomé Island, São Tomé and Príncipe	STP	Hancock et al. 2019	This study		

References

- Barbanti A, Martin C, Blumenthal JM, Boyle J, Broderick AC, Collyer L, Ebanks-Petrie G, Godley BJ, Mustin W, Ordóñez V, Pascual M (2019) How many came home? Evaluating ex situ conservation of green turtles in the Cayman Islands. Mol Ecol 28:1637-1651 https://doi.org/10.1111/mec.15017
- Hancock JM, Vieira S, Taraveira L, Santos A, Schmitt V, Semedo A, Patrício AR, Ferrand N, Gonçalves H, Sequeira F (2019) Genetic characterization of green turtles (*Chelonia mydas*) from São Tomé and Príncipe: Insights on species recruitment and dispersal in the Gulf of Guinea. J Exp Mar Biol Ecol 518:151181 <u>https://doi.org/10.1016/j.jembe.2019.151181</u>
- Millán-Aguilar O (2009) Estructura genética poblacional de la tortuga verde, *Chelonia mydas*, en el golfo de México determinada por análisis de sequencias del ADN mitocondrial. MSc thesis, Universidad Nacional Autónoma de México, Mazatlán
- Naro-Maciel E, Hart KM, Cruciata R, Putman NF (2017) DNA and dispersal models highlight constrained connectivity in a migratory marine megavertebrate. Ecography 40:586–597 https://doi.org/10.1111/ecog.02056
- Patrício AR, Vélez-Zuazo X, van Dam RP, Diez CE (2017a) Genetic composition and origin of juvenile green turtles foraging at Culebra, Puerto Rico, as revealed by mtDNA. Lat Am J Aquat Res 45:506-520 <u>https://doi.org/10.3856/vol45-issue3-fulltext-2</u>
- Patrício AR, Formia A, Barbosa C, Broderick AC, Bruford M, Carreras C, Catry P, Ciofi C, Regalla A, Godley BJ (2017b) Dispersal of green turtles from Africa's largest rookery assessed through genetic markers. Mar Ecol Prog Ser 569:215-225 <u>https://doi.org/10.3354/meps12078</u>
- Shamblin BM, Bolten AB, Bjorndal KA, Dutton PH, Nielsen JT, Abreu-Grobois FA, Reich KJ, Witherington BE, Bagley DA, Ehrhart LM, Tucker AD (2012) Expanded mitochondrial control region sequences increase resolution of stock structure among North Atlantic loggerhead turtle rookeries. Mar Ecol Prog Seri 469:145-160 <u>https://doi.org/10.3354/meps09980</u>
- Shamblin BM, Dutton PH, Bjorndal KA, Bolten AB, Naro-Maciel E, Santos AJB, Bellini C, Baptistotte C, Marcovaldi MÂ, Nairn CJ (2015) Deeper mitochondrial sequencing reveals cryptic diversity and structure in Brazilian green turtle rookeries. Chelonian Conserv Biol 14:167-172 <u>https://doi.org/10.2744/CCB-1152.1</u>
- Shamblin BM, Witherington BE, Hirama S, Hardy RF, Nairn CJ (2018) Mixed stock analyses indicate population-scale connectivity effects of active dispersal by surface-pelagic green turtles. Mar Ecol Prog Ser 601:215-226 <u>https://doi.org/10.3354/meps12693</u>
- Shamblin BM, Hart KM, Martin KJ, Ceriani SA, Bagley DA, Mansfield KL, Ehrhart LM, Nairn CJ (2020) Green turtle mitochondrial microsatellites indicate finer-scale natal homing to isolated islands than to continental nesting sites. Mar Ecol Prog Ser 643:159-171 https://doi.org/10.3354/meps13348
- Shamblin BM, Bolten AB, Bjorndal KA (2023) Mitochondrial microsatellite sequences improve the resolution of genetic structure in western Greater Caribbean green turtle nesting populations. Mar Biol 170:115 <u>https://doi.org/10.1007/s00227-023-04256-7</u>
- Vásquez-Carrillo C, Noriega-Hoyos CL, Hernandez-Rivera L, Jáuregui-Romero GA, Sullivan Sealey K (2020) Genetic diversity and demographic connectivity of Atlantic green sea turtles at foraging grounds in northeastern Colombia, Caribbean Sea. Front Mar Sci 7:96 <u>https://doi.org/10.3389/fmars.2020.00096</u>