

Figure S1: Map of the coastal estuary Ninigret Pond, RI showing the location of the 4 sampling sites. All molecular samples were collected within 50 m of each other within coordinates of 41.357°N, 71.653°W.

Figure S2: (A) Rarefaction curves from 24 samples using OTU classification at 97% similarity. Control, 3, 5, and 7 years of oyster farming sites are represented by yellow, green, red, and blue points respectively. (B) Diversity indices across all 4 samples. Data is average \pm SD, n = 6.

Figure S3: Log₁₀ LDA Scores of taxonomic biomarkers in control (red) and 7-year (green) farm sites as predicted by Linear <u>discriminant analysis</u> (LDA) effect size (LEfSe) analyses.

Figure S4: Heat map of top 100 most abundant genera shared between all 4 sampling sites. Heat map was constructed using *Python* with gene dendrogram assigned by neighbor joining method using *hclust* in *R*. Each bar is the average of the relative abundances of the individual genus across all 6 replicates within that sampling site.

Figure S5: (A) Pearson Correlation Analyses of elements across all sites; (B) Pearson Correlation Analyses of elements and bacterial phyla across all sites

	Metal Concentrations (mg/kg)					
	Control (0 years)	OA 1 (3 years)	OA 2 (5 years)	OA 3 (7 years)		
Sodium (Na)	2754.59 ± 469.13	2593.22 ± 734.14	2678.81 ± 582.05	3051.39 ± 960.92		
Magnesium (Mg)	890.81 ± 75.63	699.31 ± 142.77	821.64 ± 107.10	772.34 ± 179.62		
Aluminum (Al)	1192.35 ± 87.07	873.45 ± 173.79	1052.07 ± 117.28	939.99 ± 112.36		
Potassium (K)	586.74 ± 49.52	438.67 ± 90.27	538.70 ± 58.95	459.31 ± 87.60		
Calcium (Ca)	536.67 ± 89.48	1404.57 ± 518.27	1074.70 ± 653.45	1025.12 ± 818.22		
Phosphorus (P)	167.98 ± 32.51	121.77 ± 24.24	148.07 ± 10.74	149.18 ± 27.81		
Sulphur (S)	660.26 ± 70.50	528.74 ± 134.41	614.50 ± 110.69	681.09 ± 147.96		
Chromium (Cr)	1.89 ± 0.19	1.30 ± 0.22	1.64 ± 0.16	1.44 ± 0.19		
Manganese (Mn)	27.71 ± 2.15	18.83 ± 2.98	24.81 ± 2.82	23.01 ± 2.07		
Iron (Fe)	2173.31 ± 137.59	1564.83 ± 271.10	1920.93 ± 175.69	1737.11 ± 259.50		
Cobalt (Co)	0.67 ± 0.03	0.46 ± 0.08	0.58 ± 0.058	0.48 ± 0.06		
Nickel (Ni)	1.54 ± 0.14	1.08 ± 0.20	1.40 ± 0.19	1.12 ± 0.16		
Copper (Cu)	1.63 ± 0.21	1.69 ± 0.46	1.54 ± 0.17	1.69 ± 0.38		
Zinc (Zn)	9.94 ± 1.09	8.59 ± 1.49	8.66 ± 0.70	7.46 ± 1.36		
Arsenic (As)	1.08 ± 0.06	0.88 ± 0.19	1.19 ± 0.45	0.87 ± 0.16		
Selenium (Se)	0.05 ± 0.01	0.04 ± 0.01	0.05 ± 0.01	0.05 ± 0.02		
Molybdenum (Mo)	0.40 ± 0.08	0.38 ± 0.15	0.40 ± 0.14	0.51 ± 0.076		
Cadmium (Cd)	0.05 ± 0.01	0.04 ± 0.01	0.05 ± 0.00	0.044 ± 0.01		
Barium (Ba)	6.51 ± 0.82	4.70 ± 1.07	5.68 ± 0.69	4.42 ± 0.70		
Lead (Pb)	2.61 ± 0.24	1.69 ± 0.36	2.36 ± 0.21	2.09 ± 0.48		

Table S1: Concentrations of individual elements in mg kg⁻¹ across all 4 sampling sites. Data is average \pm SD, n= 6.

Table S2: Detrended Correspondence analysis and PCA analyses with *envfit* function on bacterial OTUs and sedimentelemental concentrations.

Detrended correspondence analysis with 26 segments. Rescaling of axes with 4 iterations.								
Total mertia (scaled Chi-square): 0.8337								
		DCA1	DCA2	DCA3	DCA4			
Eigenvalues		0.08314	0.04285	0.03408	0.02806			
Additive Eigenvalues	0.08314	0.04281	0.03406	0.02799				
Decorana values	0.08378	0.0421	0.03281	0.02952				
Axis lengths		1.14156	0.87701	0.99252	0.98369			
The 1st axis length is <3.5. linear or PCA can be done (Lenš & Šmilauer 2003)								

ENFIT results:

***VECTORS

Elements	PC1	PC2	r2	Pr(>r)
Na	0.61741	-0.78664	0.0259	0.773
Mg	-0.70118	-0.71298	0.1538	0.173
Al	-0.82696	-0.56226	0.3826	0.009 **
К	-0.84644	-0.53249	0.2894	0.031 *
Са	0.94259	0.33395	0.1628	0.149
Р	-0.46594	-0.88482	0.2245	0.067 •
S	0.1085	-0.9941	0.095	0.347
Cr	-0.67235	-0.74024	0.5204	0.001 ***
Mn	-0.70068	-0.71348	0.3863	0.005 **
Fe	-0.76549	-0.64344	0.3792	0.004 **
Со	-0.84742	-0.53092	0.4909	0.002 **
Ni	-0.725	-0.68875	0.4134	0.003 **
Cu	0.51566	-0.85679	0.0135	0.881
Zn	-0.87564	-0.48296	0.3279	0.024 *
As	-0.24232	-0.9702	0.0392	0.635
Se	-0.06555	-0.99785	0.1225	0.25
Мо	0.69074	-0.7231	0.209	0.091 •
Cd	-0.68368	-0.72978	0.1373	0.205
Ва	-0.94497	-0.32714	0.4188	0.003 **
Pb	-0.65236	-0.75791	0.2386	0.066

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '*' 0.1 ' ' 1 Permutation: free

Number of permutations: 999