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ABSTRACT: Coastal bay systems are prominent features of coastlines on nearly all continents
and are vulnerable to long-term environmental changes related to climate and nutrient over-
enrichment. Eelgrass Zostera marina disappeared in the 1930s from the coastal bays of the Vir-
ginia Coast Reserve, USA, primarily due to a wasting disease and the effects of a hurricane. It has
been re-established recently as a result of a large-scale seeding and restoration effort. The contri-
butions to this Theme Section provide the most comprehensive account available of large-scale
recovery of an eelgrass ecosystem, the consequences of the state change from a bare-sediment
system to eelgrass dominance, and projections of meadow resilience to future climate change sce-

narios.
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Coastal bay systems are prominent features of
coastlines on nearly all continents, and although their
watersheds are small relative to large river-fed estu-
aries, they are as vulnerable to long-term envi-
ronmental changes related to climate and nutrient
over-enrichment (McGlathery et al. 2007). In these
shallow-water systems, where most of the seafloor is
in the photic zone, seagrass and benthic algae domi-
nate metabolism and nutrient cycling, play a critical
role in stabilizing the coastline, and provide habitat
for important components of the fauna. Long-term
trends in seagrass abundance and distribution indi-
cate that the rate of habitat loss is accelerating world-
wide, due to degraded water quality, disturbance
and disease; this is accompanied by a loss of ecosys-
tem services (Orth et al. 2006a, Waycott et al. 2009,
Short et al. 2011). There has been some success in
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large-scale restoration efforts to mitigate these
losses, but not enough to reverse the declining trends
globally (Waycott et al. 2009).

The Virginia Coast Reserve

The coastal bays of the Virginia Coast Reserve
(VCR) are renowned for their local, regional, and
global value to migratory birds (Watts & Truitt 2001)
and diverse marine life, as well as for historically sup-
porting fisheries of significant commercial value
(Barnes & Truitt 1998). The VCR coastal bays suf-
fered a catastrophic ecosystem state change in the
20th century, primarily due to a wasting disease that
devastated Zostera marina (eelgrass) and a hurricane
in 1933 that likely eliminated remaining populations.
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The state change from Z. marina to an ‘unvegetated’
bottom dominated by benthic algae resulted in the
loss of critical ecosystem services, including the pro-
vision of food and nursery habitat for numerous avian
and marine species such as the bay scallop Argo-
pecten irradians. While Z. marina eventually re-
bounded from the pandemic decline in the Chesa-
peake Bay and in many coastal bays along the
eastern seaboard of the United States (Cottam &
Munro 1954), there are no records of Z. marina in the
VCR coastal bays until the mid-1990s (Orth et al.
2006b).

What makes the coastal bays of Virginia unique,
and what has been important to the restoration of
Zostera marina, is that they represent systems that
receive relatively little impact from human activities.
The VCRis a Long Term Ecological Research (LTER)
site that is part of a network of 26 sites representing
diverse marine and terrestrial ecosystems (www.lter-
net.edu). At the VCR, ongoing studies for 2 decades
examining physical, biogeochemical and biological
aspects of the coastal bays in the absence of Z.
marina (e.g. McGlathery et al. 2001, Anderson et al.
2003, Tyler et al. 2003) set the stage for understand-
ing the consequences of the state change back to eel-
grass dominance from the unvegetated state. Long-
term data from the VCR LTER show that watershed
nutrient loading to the coastal bays is low and that
water quality with respect to nutrients and chloro-
phyll has remained high for the last 2 decades
(wwwl.vcrlter.virginia.edu/homel/?2q=data_wq). In
1970, the VCR was established as a reserve by The
Nature Conservancy and later was recognized as a
Man and the Biosphere Reserve, creating a legacy of
conservation and stewardship. The VCR is both a
model system for understanding the dynamics of Z.
marina recovery where habitat quality is high, and
an important reference point for the more heavily-
impacted systems that are typical of coastal regions
(Kennish & Paerl 2010).

Return of a foundation species

Restoration of Zostera marina with seeds in this
system has been very successful since the late 1990s.
Approximately 1700 ha of bottom in 4 lagoons that
had abundant Z. marina prior to its demise again
support robust populations (Fig. 1). While there has
been no definitive answer as to why Z. marina never
recovered from the 1930s demise, recent work pro-
vides strong support that recruitment limitation (pri-
marily seeds), and not increased turbidity following

the loss of Z. marina (Peterson & Lipcius 2003), was
the primary reason why Z. marina did not recover.
This conclusion is supported by the recent success of
restoration by seeding, monitoring that revealed
good water quality, physical modeling of sediment
suspension and water column light attenuation (Law-
son et al. 2007), and by a more complete understand-
ing of the biology and ecology of this species (Moore
& Short 2006), especially its dispersal dynamics (Har-
well & Orth 2002).

The change from an unvegetated state to one with
dense and extensive Zostera marina populations has
provided a unique opportunity to understand the
central role of Z. marina as a foundation species in
temperate shallow coastal systems. Throughout this
theme section we use the term ‘restoration’ in the
broadest sense. While this term has generally been
applied to systems that have been altered due to
anthropogenic activities, we adopt this term for our
work here based on the comment in Elliott et al.
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Fig. 1. Delmarva Peninsula and sites of eelgrass restoration
(red)
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(2007, p 357) 'we recommend that producing new
habitat can be termed creation or enhancement
whereas re-creating habitat that was present within
historical records, no matter how old, should be
termed restoration.’

Contributions to this Theme Section

The studies in this Theme Section cover a broad
and comprehensive range of topics. Orth et al. (2012)
describe the rapid changes in Zostera marina distrib-
ution initiated by seeding and by natural recruitment
processes that have facilitated recovery. By continu-
ously monitoring water quality, they show how one
meadow modulated water clarity and altered the
sediment as it developed and expanded. Marion &
Orth (2012) investigate the processes leading to the
low initial seedling establishment noted in Orth et al.
(2012) through a manipulative field experiment that
addressed the relative importance of germination
failure and seedling loss during the winter. They
show that some of the key processes in recruitment
and restoration of Z. marina involve physical sedi-
ment-seedling interactions rather than seed germi-
nation. McGlathery et al. (2012) compare sites from 0
(unvegetated) to 9 yr after seeding and show the
restoration of key ecosystem services such as primary
productivity, carbon and nutrient sequestration, and
sediment deposition. However, their results indicate
that none of the parameters monitored reached an
asymptote after 9 yr, indicating that more time is
required for full restoration of these ecosystem ser-
vices. They also identify the depth limit (1.6 m) for
eelgrass populations in the coastal bays. Using micro-
satellite markers, Reynolds et al. (2012) show that the
high genetic diversity in donor beds from Chesapeake
Bay is maintained in meadows restored by seeding in
the Virginia coastal bays. Cole & McGlathery (2012)
found that nitrogen fixation increased as the mead-
ows aged, with older beds fixing almost 3 times more
nitrogen than younger meadows and 30 times more
than bare sediment. Moore et al. (2012) compare
water quality conditions associated with Z. marina
populations in the coastal bays and in nearby areas in
the lower Chesapeake Bay, where Z. marina has
either declined or remained static over the same time
period. Their results indicate that lower summertime
water temperatures and lower light attenuation inter-
act to both increase the proportion of light available
for Z. marina photosynthesis and decrease Z. marina
community light requirements at the coastal bay
sites. They suggest that the greater tidal range and

proximity of the coastal bays to cooler ocean waters
ameliorates the stress from high air temperature peri-
ods during the summer. Using controlled microcosm
experiments, Lawson et al. (2012) show that at low
shoot densities Z. marina increases sediment suspen-
sion due to the horizontal deflection of flow around
eelgrass shoots, but that past a threshold density, eel-
grass reduces sediment suspension. In field studies,
Hansen & Reidenbach (2012) quantify the relative
effects of meadow structure on tidal currents, waves,
and near-bed turbulence, and the resulting sediment
suspension: expansion of Z. marina within the coastal
bays has shifted the seafloor from an erosional to
depositional environment, leading to enhanced light
penetration through the water column and creating a
positive feedback for Z. marina growth. Carr et al.
(2012) build this positive feedback into a coupled
vegetation-growth hydrodynamic model to investi-
gate Z. marina stability and leading indicators of
ecosystem shift under future scenarios of sea level
rise and warmer sea temperatures. Their model
identifies the emergence of alternative stable states
(vegetated vs. barren bottom) with a maximum depth
threshold based on water clarity and growth condi-
tions. Their results also indicate that Z. marina mead-
ows in these coastal bays have limited resilience to
increases in water temperature predicted from cur-
rent climate change models, and agrees with field
evidence presented by Moore et al. (2012).

Perspectives

The contributions to this Theme Section provide
the most comprehensive account available of large-
scale recovery of a seagrass ecosystem, the conse-
quences of the state change from a bare-sediment
system to eelgrass dominance, and projections of
meadow resilience to future climate change scenar-
ios. This is a model system to understand state
change dynamics in shallow coastal bays, and future
work will include trophic dynamics, restoration of
bay scallops, and landscape analysis.
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